Soil organic carbon and total nitrogen storage under different land uses in the Naiman Banner, a semiarid degraded region of northern China

2014 ◽  
Vol 94 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Yuqiang Li ◽  
Juanjuan Han ◽  
Shaokun Wang ◽  
James Brandle ◽  
Jie Lian ◽  
...  
2018 ◽  
Vol 10 (12) ◽  
pp. 4757 ◽  
Author(s):  
Zhijing Xue ◽  
Shaoshan An

Soil organic carbon (SOC) and total nitrogen (total N) are important soil components for agricultural production. Soil quality is related to the total amount of SOC and total N sequestered in the soil. Land use plays a major role in the distribution and amount of SOC and total N. This study analyses the amount of SOC and total N under various land cover types in 1987, 2005 and 2010, and evaluated their storage in land use conversions in a comprehensively managed watershed on the Loess Plateau, China. Results show that concentrations of SOC and total N in shrub land and natural grassland areas were significantly higher than for other land uses (farmland, orchard, abandoned farmland, manmade grassland) while cropland had the lowest concentration. Storage of SOC and total N increased along the revegetation chronosequence. As the storage of SOC in 2005 and 2010, they were 3461.86 × 108 and 4504.04 × 108 g respectively. Soil organic carbon storage were enhanced one third just during 5 years. The effects of land use on SOC and total N were the most significant in the upper soil layers. The correlation between SOC, total N, and the C/N ratio indicated that the best combination of land uses were natural grassland and shrub land. They efficiently influenced the distribution and storage of SOC and total N, and benefited vegetation restoration.


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197451 ◽  
Author(s):  
Xuyang Wang ◽  
Yuqiang Li ◽  
Yinping Chen ◽  
Jie Lian ◽  
Yongqing Luo ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 2425
Author(s):  
Getu Abebe ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
Taniguchi Takeshi ◽  
Menale Wondie ◽  
...  

Soil organic carbon (SOC) and total nitrogen (TN) are key ecological indicators of soil quality in a given landscape. Their status, especially in drought-prone landscapes, is associated mainly with the land-use type and topographic position. This study aimed to clarify the effect of land use and topographic position on SOC and TN stocks to further clarify the ecological processes occurring in the landscape. To analyze the status of SOC and TN, we collected 352 composite soil samples from three depths in the uppermost soil (0–50 cm) in four major land-use types (bushland, cropland, grazing land, and plantation) and three topographic positions (upper, middle, and lower) at three sites: Dibatie (lowland), Aba Gerima (midland), and Guder (highland). Both SOC and TN stocks varied significantly across the land uses, topographic positions, and agro-ecosystems. SOC and TN stocks were significantly higher in bushland (166.22 Mg ha−1) and grazing lands (13.11 Mg ha−1) at Guder. The lowest SOC and TN stocks were observed in cropland (25.97 and 2.14 Mg ha−1) at Aba Gerima, which was mainly attributed to frequent and unmanaged plowing and extensive biomass removal. Compared to other land uses, plantations exhibited lower SOC and TN stocks due to poor undergrowth and overexploitation for charcoal and firewood production. Each of the three sites showed distinct characteristics in both stocks, as indicated by variations in the C/N ratios (11–13 at Guder, 10–21 at Aba Gerima, and 15–18 at Dibatie). Overall, land use was shown to be an important factor influencing the SOC and TN stocks, both within and across agro-ecosystems, whereas the effect of topographic position was more pronounced across agro-ecosystems than within them. Specifically, Aba Gerima had lower SOC and TN stocks due to prolonged cultivation and unsustainable human activities, thus revealing the need for immediate land management interventions, particularly targeting croplands. In a heterogeneous environment such as the Upper Blue Nile basin, proper understanding of the interactions between land use and topographic position and their effect on SOC and TN stock is needed to design proper soil management practices.


Sign in / Sign up

Export Citation Format

Share Document