Expression of resistance to stripe rust, powdery mildew and the wheat curl mite in Triticum aestivum × Haynaldia villosalines

2002 ◽  
Vol 82 (2) ◽  
pp. 451-456 ◽  
Author(s):  
Q. Chen ◽  
R. L. Conner ◽  
H. Li ◽  
A. Laroche ◽  
R. J. Graf ◽  
...  

Stripe rust, powdery mildew and the wheat curl mite (Aceria tosichella) (WCM) are common problems in wheat throughout the world. The expression of resistance to these diseases and the mite was investigated in wheat ×Haynaldia villosa chromosome addition, substitution and translocation lines. Progeny tests and cytogenetic examinations were carried out on crosses of the 6VS translocation line with susceptible genotypes of wheat to study the inheritance of the stripe rust, powdery mildew and WCM resistance. These studies also were used to elucidate if the resistance was associated with the H. villosa 6V chromosome. The test results confirmed the presence of a high level of resistance to stripe rust in wheat × H. villosa 6V addition and 6VS translocation lines. However, progeny tests and genomic in situ hybridization (GISH) analysis showed that the stripe rust resistance gene, Yr26 was not associated with the H. villosa chromosome arm 6VS. While WCM and powdery mildew resistance were always associated with the presence of the 6VS chromosome arm in the F2 and F3 populations. The study also showed that most wheat × H. villosa addition or substitution lines were heterogenous in their reaction to stripe rust. The possible reasons for the heterogeneous response to stripe rust in wheat lines carrying the H. villosa chromosomes 2V, 3V and 4V are discussed. Key words: Haynaldia villosa, Puccinia striformis, Aceria tosichella, stripe rust, expression of resistance, addition lines, substitution lines, 6VS-translocation

2017 ◽  
Vol 151 (1) ◽  
pp. 50-59 ◽  
Author(s):  
Tianheng Ren ◽  
Zhi Li ◽  
Benju Yan ◽  
Feiquan Tan ◽  
Zongxiang Tang ◽  
...  

Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaolu Wang ◽  
Ran Han ◽  
Zhiwei Chen ◽  
Jianbo Li ◽  
Tong Zhu ◽  
...  

Wheat pathogens, especially those causing powdery mildew and stripe rust, seriously threaten yield worldwide. Utilizing newly identified disease resistance genes from wheat relatives is an effective strategy to minimize disease damage. In this study, chromosome-specific molecular markers for the 3Sb and 7Sb chromosomes of Aegilops bicornis were developed using PCR-based landmark unique gene (PLUG) primers for screening wheat-Ae. bicornis progenies. Fluorescence in situ hybridization (FISH) was performed to further identify wheat-Ae. bicornis progenies using oligonucleotides probes Oligo-pSc119.2-1, Oligo-pTa535-1, and Oligo-(GAA)8. After establishing Ae. bicornis 3Sb and 7Sb chromosome-specific FISH markers, Holdfast (common wheat)-Ae. bicornis 3Sb addition, 7Sb addition, 3Sb(3A) substitution, 3Sb(3B) substitution, 3Sb(3D) substitution, 7Sb(7A) substitution, and 7Sb(7B) substitution lines were identified by the molecular and cytological markers. Stripe rust and powdery mildew resistance, along with agronomic traits were investigated to evaluate the breeding potential of these lines. Holdfast and Holdfast-Ae. bicornis progenies were all highly resistant to stripe rust, indicating that the stripe rust resistance might derive from Holdfast. However, Holdfast-Ae. bicornis 3Sb addition, 3Sb(3A) substitution, 3Sb(3B) substitution, and 3Sb(3D) substitution lines showed high resistance to powdery mildew while Holdfast was highly susceptible, indicating that chromosome 3Sb of Ae. bicornis carries previously unknown powdery mildew resistance gene(s). Additionally, the transfer of the 3Sb chromosome from Ae. bicornis to wheat significantly increased tiller number, but chromosome 7Sb has a negative effect on agronomic traits. Therefore, wheat germplasm containing Ae. bicornis chromosome 3Sb has potential to contribute to improving powdery mildew resistance and tiller number during wheat breeding.


2020 ◽  
Vol 11 ◽  
Author(s):  
Michał T. Kwiatek ◽  
Waldemar Ulaszewski ◽  
Jolanta Belter ◽  
Dylan Phillips ◽  
Roksana Skowrońska ◽  
...  

Alien chromosome introgression has become a valuable tool to broaden the genetic variability of crop plants via chromosome engineering. This study details the procedure to obtain monosomic addition and monosomic substitution lines of the triticale carrying 2Sk chromosome from Aegilops kotchyi Boiss., which harbors Lr54 + Yr37 leaf and stripe rust-resistant gene loci, respectively. Initially, A. kotschyi × Secale cereale artificial amphiploids (2n = 6x = 42 chromosomes, UUSSRR) were crossed with triticale cv. “Sekundo” (2n = 6x = 42, AABBRR) in order to obtain fertile offspring. Cyto-molecular analyses of five subsequent backcrossing generations revealed that 2Sk chromosome was preferentially transmitted. This allowed for the selection of monosomic 2Sk addition (MA2Sk) lines of triticale. Finally, the 2Sk(2R) substitution plants were obtained by crossing MA2Sk with the nullisomic (N2R) plants of triticale. The presence of 2Sk chromosome in subsequent generations of plants was evaluated using SSR markers linked to Lr54 + Yr37 loci. Disease evaluation of the monosomic 2Sk(2R) substitution plants for the reaction to leaf and stripe rust infection were carried out under controlled conditions in a growth chamber. The results showed significant improvement of leaf rust resistance severity of monosomic substitution plants compared with control (“Sekundo”). In contrast, the introgression of the Lr54 + Yr37 loci did not lead to improvement of stripe rust resistance. In summary, the creation of monosomic addition and monosomic substitution lines of triticale is the starting point for the precise and guided transfer of Lr54 + Yr37 loci. The results showed that the developed materials could be exploited for the development of triticale varieties with resistance to leaf rust.


2021 ◽  
Author(s):  
Siwen Wang ◽  
Changyou Wang ◽  
Xianbo Feng ◽  
Jixin Zhao ◽  
Pingchuan Deng ◽  
...  

Abstract Background Owing to the excellent resistance to abiotic and biotic stress, Thionpyrum intermedium (2n = 6x = 42, JJJsJsStSt) and Thinopyrum ponticum (2n = 10x = 70) are both widely utilized in wheat germplasm innovation programs. Disomic substitution lines (DSLs) carrying one pair of alien chromosomes are valuable bridge materials for novel genes transmission, FISH karyotype construction and specific molecular marker development. Results Six wheat–Thinopyrum DSLs derived from crosses between Abbondanza nullisomic lines (2n = 40) and two octoploid Trititrigia lines (2n = 8x = 56), were characterized by a sequential fluorescence in situ hybridization (FISH)–genome in situ hybridization (GISH), a multicolor GISH (mc-GISH), and an analysis of wheat 15K SNP array combined with molecular marker selection. ES-9 (DS2St (2A)) and ES-10 (DS3St (3D)) are wheat–Th. ponticum DSLs, while ES-23 (DS2St (2A)), ES-24 (DS3St (3D)), ES-25(DS2St (2B)), and ES-26 (DS2St (2D)) are wheat–Th. intermedium DSLs. ES-9, ES-23, ES-25 and ES-26 conferred higher thousand-kernel weight and stripe rust resistance at adult stages, while ES-10 and ES-24 performed highly resistant to stripe rust at all stages. Furthermore, cytological analysis showed that the alien chromosomes (2St/3St) belonging to the same homoeologous group derived from different donors carried the same FISH karyotype and could normally form a bivalent. Based on specific-locus amplified fragment sequencing (SLAF-seq), two 2St-chromosome-specific markers (PTH-005 and PTH-013) and two 3St-chromosome-specific markers (PTH-113 and PTH-135) were developed. Conclusions The six wheat–Thinopyrum disomic substitution lines conferring stripe rust resistance will be used as bridging parents for valuable resistant genes transmission. And the utility of PTH-113 and PTH-135 in a BC1F2 population showed the newly developed markers could be useful tools for efficient identification of St chromosomes in a common wheat background.


2022 ◽  
Author(s):  
Tianheng Ren ◽  
Qing Jiang ◽  
Zixin Sun ◽  
Zhenglong Ren ◽  
Feiquan Tan ◽  
...  

Wheat-rye 1RS•1BL translocations from Petkus rye have contributed substantially to wheat production worldwide with their great disease resistance and yield traits. However, the resistance genes on the 1RS chromosomes have completely lost their resistance to newly emerged pathogens. Rye could widen the variation of 1RS as a naturally cross-pollinated related species of wheat. In this study, we developed three new 1RS•1BL translocation lines by crossing rye inbred line BL1, selected from Chinese landrace rye Baili, with wheat cultivar Mianyang11. These three new translocation lines exhibited high resistance to the most virulent and frequently occurring stripe rust pathotypes and showed high resistance in the field where stripe rust outbreaks have been most severe in China. One new gene for stripe rust resistance, located on 1RS of the new translocation lines, is tentatively named YrRt1054. YrRt1054 confers resistance to Puccinia striiformis f. sp. tritici pathotypes that are virulent toward Yr9 and YrCn17. This new resistance gene, YrRt1054, is available for wheat improvement programs. The present study indicated that rye cultivars may carry additional untapped variation as potential sources of resistance.


2012 ◽  
Vol 63 (6) ◽  
pp. 539 ◽  
Author(s):  
M. A. Asad ◽  
B. Bai ◽  
C. X. Lan ◽  
J. Yan ◽  
X. C. Xia ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a fungal disease that causes significant yield losses in many wheat-growing regions of the world. Previously, five quantitative trait loci (QTLs) for adult-plant resistance (APR) to stripe rust resistance were identified in Italian wheat cultivar Libellula. The objectives of this study were to map QTLs for APR to powdery mildew in 244 F2 : 3 lines of Libellula/Huixianhong, to analyse the stability of detected QTLs across environments, and to assess the association of these QTLs with stripe rust resistance. Powdery mildew response was evaluated for 2 years in Beijing and for 1 year in Anyang. The correlation between averaged maximum disease severity (MDS) and averaged area under disease progress curve (AUDPC) over 2 years in Beijing was 0.98, and heritabilities of MDS and AUDPC were 0.65 and 0.81, respectively, based on the mean values averaged across environments. SSR markers were used to screen the parents and mapping population. Five QTLs were identified by inclusive composite interval mapping, designated as QPm.caas-2DS, QPm.caas-4BL.1, QPm.caas-6BL.1, QPm.caas-6BL.2, and QPm.caas-7DS. Three QTLs (QPm.caas-2DS and QPm.caas-6BL.1, and QPm.caas-6BL.2) seem to be new resistance loci for powdery mildew. QTLs QPm.caas-2DS and QPm.caas-4BL.1 were identified at the same position as previously mapped QTLs for stripe rust resistance in Libellula. The QTL QPm.caas-7DS, derived from Libellula, coincided with the slow rusting and slow mildewing locus Lr34/Yr18/Pm38. These results and the identified markers could be useful for wheat breeders aiming for durable resistance to both powdery mildew and stripe rust.


Sign in / Sign up

Export Citation Format

Share Document