Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL

Author(s):  
Shengjie Liu ◽  
Xiaoting Wang ◽  
Yayun Zhang ◽  
Yangang Jin ◽  
Zhonghua Xia ◽  
...  
2001 ◽  
Vol 52 (12) ◽  
pp. 1247 ◽  
Author(s):  
H. S. Bariana ◽  
M. J. Hayden ◽  
N. U. Ahmed ◽  
J. A. Bell ◽  
P. J. Sharp ◽  
...  

Doubled haploid populations of CD87/Katepwa, Cranbrook/Halberd, and Sunco/Tasman were assessed for seedling response to stem rust and stripe rust. The CD87/Katepwa population was also screened as adult plants in the field against stripe rust. The respective parents differed in presence or absence of various stem rust and stripe rust resistance genes. At least 4 resistance loci controlled adult plant resistance to stripe rust in the CD87/Katepwa population, and based on quantitative trait loci mapping results, two of these were contributed by CD87. Pedigree information indicated that these regions correspond to durable adult plant stripe rust resistance genes Yr18 and Yr29. Yr29 was mapped to the distal region of chromosome 1BL. The third gene, contributed by Katepwa, YrKat, was located in chromosome arm 2DS. Sr30 mapped distal to markers abg3 and P36/M61-170 in chromosome arm 5DL. Genes Yr7 and Pbc (completely linked with durable stem rust resistance gene Sr2) showed close associations with markers in chromosome arms 2BL and 3BS, respectively. A distally located genomic region in chromosome 6AS also affected the expression of Pbc. The temperature-sensitive stripe rust resistance gene, YrCK, carried by Sunco showed monogenic inheritance and was located in chromosome arm 2DS. Several markers showed complete association with Triticum timopheevi derived stem rust resistance gene Sr36. Microsatellite markers stm773 and gwm271A were validated on a set of wheat genotypes and were found to be diagnostic for the detection of Sr36. TheSr36-linked Xstm773 allele showed better amplification than the Sr36-linked Xgwm271A allele. These markers could be used for marker assisted identification of Sr36 in breeding populations.


2010 ◽  
Vol 36 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Hong ZHANG ◽  
Zhi-Long REN ◽  
Yin-Gang HU ◽  
Chang-You WANG ◽  
Wan-Quan JI

Euphytica ◽  
2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Maryam Tariq ◽  
Javed Iqbal Mirza ◽  
Shaukat Hussain ◽  
Naeela Qureshi ◽  
Kerrie Forrest ◽  
...  

Euphytica ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Sanjaya Gyawali ◽  
Sujan Mamidi ◽  
Shiaoman Chao ◽  
Subhash C. Bhardwaj ◽  
Pradeep S. Shekhawat ◽  
...  

Author(s):  
Shisheng Chen ◽  
Joshua Hegarty ◽  
Tao Shen ◽  
Lei Hua ◽  
Hongna Li ◽  
...  

AbstractKey messageThe stripe rust resistance geneYr34 was transferred to polyploid wheat chromosome 5AL from T. monococcumand has been used for over two centuries.Wheat stripe (or yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is currently among the most damaging fungal diseases of wheat worldwide. In this study, we report that the stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal segment of the cultivated Triticum monococcum subsp. monococcum chromosome 5AmL translocated to chromosome 5AL in polyploid wheat. The diploid wheat species Triticum monococcum (genome AmAm) is closely related to T. urartu (donor of the A genome to polyploid wheat) and has good levels of resistance against the stripe rust pathogen. When present in hexaploid wheat, the T. monococcum Yr34 resistance gene confers a moderate level of resistance against virulent Pst races present in California and the virulent Chinese race CYR34. In a survey of 1,442 common wheat genotypes, we identified 5AmL translocations of fourteen different lengths in 17.5% of the accessions, with higher frequencies in Europe than in other continents. The old European wheat variety “Mediterranean” was identified as a putative source of this translocation, suggesting that Yr34 has been used for over 200 years. Finally, we designed diagnostic CAPS and sequenced-based markers that will be useful to accelerate the deployment of Yr34 in wheat breeding programs to improve resistance to this devastating pathogen.


2005 ◽  
Vol 84 (3) ◽  
pp. 337-340 ◽  
Author(s):  
Renu Khanna ◽  
U. K. Bansal ◽  
R. G. Saini

Sign in / Sign up

Export Citation Format

Share Document