scholarly journals Solubilization of Rare Earth Elements (La, Ce, and Tb) in Waste Phosphor Using Concentrated Sulfuric Acid

2015 ◽  
Vol 62 (3) ◽  
pp. 77-81
Author(s):  
Kazuya KOYAMA ◽  
Mikiya TANAKA
Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 262 ◽  
Author(s):  
Xiaosheng Yang ◽  
Hannu Tapani Makkonen ◽  
Lassi Pakkanen

Rare earth elements (REEs) are defined as lanthanides with Y and Sc. Rare earth occurrences including the REE-bearing phases and their distributions, measured by rare earth oxides (REOs), in the streams of processing a phosphate ore were determined by using MLA, the mineral liberation analysis and EPMA, the electron probe microanalysis. The process includes an apatite ore beneficiation by flotation and further processing of the beneficiation concentrate with sulfuric acid. Twenty-six, sixty-two and twelve percent of the total REOs (TREO) contents from the ore end up in the products of beneficiation tailings, phosphogypsum (PG) and phosphoric acid, respectively. Apatite, allanite, monazite and pyrochlore are identified as REE-bearing minerals in the beneficiation process. In the beneficiation tailings, the REEs are mainly distributed in monazite (10.3% TREO), apatite (5.9% TREO), allanite (5.4% TREO) and pyrochlore (4.3% TREO). Gypsum, monazite, apatite and other REE-bearing phases were found to host REEs in the PG and the REEs distributions are 44.9% TREO in gypsum, 15.8% TREO in monazite, 0.6% TREO in apatite and 0.6% TREO in other REE-bearing phases. Perspectives on the efficient recovery of REEs from the beneficiation tailings and the PG are discussed.


2015 ◽  
Vol 53 (1) ◽  
pp. 46-52
Author(s):  
Chul-Joo Kim ◽  
Ho-Sung Yoon ◽  
Kyung Woo Chung ◽  
Jin-Young Lee ◽  
Sung-Don Kim ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 804
Author(s):  
Iga Trisnawati ◽  
Gyan Prameswara ◽  
Panut Mulyono ◽  
Agus Prasetya ◽  
Himawan Tri Bayu Murti Petrus

2021 ◽  
Vol 59 (7) ◽  
pp. 459-468
Author(s):  
Gee Hun Lee ◽  
Chang Kwon Kim ◽  
Dong Hoon Lee ◽  
Young Jun Song

This study was carried out to obtain data to design a process to recover rare earth elements, specifically Y(Yttrium), La(Lanthanum), Ce(Cerium), Eu(Europium), Tb(Terbium) from waste phosphor powder. For this purpose, we investigated the effect of temperature, concentration, time and acids on leaching of the rare earth elements. The effect of roasting temperature, roasting time, roasting agent and its dosage on the leaching of rare earth elements were also investigated. 92% of the Yttrium, 70% of the Europium and 8% of the Cerium contained in the waste phosphor powder was leached at the condition of 50 oC and 0.3N HCl solution for 3hours. However, Terbium and Lanthanum were never leached at this condition. The leaching ratio increased to 100% of Yttrium and Europium, 98% of Cerium, 92% of Terbium and 89% of Lanthanum by leaching after soda ash roasting. In the leaching experiment with unroasted phosphor at 80 oC, the initial leaching reaction rate of Yttrium was 0.035 mol/L·s in 0.3N sulfuric acid solution, 0.033 mol/L·s in nitric acid solution and 0.028 mol/L·s in 0.3N hydrochloric acid solution. And the initial leaching reaction rate of Europium was 0.0017 mol/L·s in 0.3N sulfuric acid solution, 0.00114 mol/L·s in nitric acid solution and 0.00113 mol/L·s in 0.3N hydrochloric acid solution. For Cerium, the initial leaching reaction rate was 0.00019 mol/L·s in 0.3N sulfuric acid solution, 0.00025 mol/L·s in nitric acid solution and 0.00014 mol/L·s in 0.3N hydrochloric acid solution.


2016 ◽  
Vol 847 ◽  
pp. 352-357 ◽  
Author(s):  
Chuan Qiu ◽  
Xian Zheng Gong ◽  
Wen Juan Chen ◽  
Zhi Hong Wang ◽  
Feng Gao ◽  
...  

The aim of this paper is to explore material flow analysis, study the resource consumption and environmental impact of the production preparation process of typical rare earth materials. The results showed that in the beneficiation processes, producing one ton of rare earth concentrates (Rare Earth Oxide, REO50%) will also produces 27 tons of iron ore and 21 tons of tailings. The recovery of rare earths is only 16.8%. In roasting processes, roasting one ton (REO50%) of rare earth concentrates will emits 150 ~ 200Kg sulfuric acid mist, 500 ~ 600Kg sulfur dioxide, 30 ~ 40Kg fluoride, 30 ~ 50Kg smoke and1t (containing thorium) radioactive slag, and 1.2 tons of concentrated sulfuric acid should be used. The lower recoveries and large-scale of concentrated sulfuric acid used in roasting processes in rare earth industry are the main reasons lead to high pollution and high emissions.


2021 ◽  
Vol 7 (1) ◽  
pp. 311-315
Author(s):  
N. Erkinbaeva

The article discusses methods for extracting rare earth elements from waste (slag) of the Kadamzhai Antimony Combine. For this, electrically activated water was used with the addition of 50% sulfuric acid in an amount of 3–10% in the ratio S:L 1:1 at a temperature of 40–80 ℃. The content of rare earth elements in the solution was determined photometrically in a medium with pH=2.2 by adding arsenazo (a reagent for concentration, separation and determination of more than 40 elements) at a wavelength of 680 nm with respect to the reference solution, as a result of which it was found that the total mass of rare earth elements was 96 mg/l.


Sign in / Sign up

Export Citation Format

Share Document