scholarly journals Cropping Sequence Influenced Crop Yield, Soil Water Content, Residue Return, and CO2 Efflux in Wheat-Camelina Cropping System

Author(s):  
E. Obeng ◽  
A. Obour ◽  
N. O. Nelson ◽  
I. A. Ciampitti ◽  
Donghai Wang ◽  
...  
2020 ◽  
Vol 68 (4) ◽  
pp. 351-358
Author(s):  
Miroslav Fér ◽  
Radka Kodešová ◽  
Barbora Kalkušová ◽  
Aleš Klement ◽  
Antonín Nikodem

AbstractThe aim of the study was to describe the impact of the soil water content and sulfamethoxazole, SUL, (antibiotic) concentration in soil on the net CO2 efflux. Soil samples were taken from topsoils of a Haplic Fluvisol and Haplic Chernozem. Soil samples were packed into the steel cylinders. The net CO2 efflux was measured from these soil columns after application of fresh water or SUL solution at different soil water contents. The experiments were carried out in dark at 20°C. The trends in the net CO2 efflux varied for different treatments. While initially high values for water treatment exponentially decreased in time, values for solution treatment increased during the first 250–650 minutes and then decreased. The total net CO2 effluxes measured for 20 hours related to the soil water content followed the second order polynomial functions. The maximal values were measured for the soil water content of 0.15 cm3 cm−3 (Haplic Fluvisol with water or solution, Haplic Chernozem with solution) and 0.11 cm3 cm−3 (Haplic Chernozem with water). The ratios between values measured for solution and water at the same soil water contents exponentially increased with increasing SUL concentration in soils. This proved the increasing stimulative influence of SUL on soil microbial activity.


Ecohydrology ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. e1989 ◽  
Author(s):  
Miroslav Fér ◽  
Radka Kodešová ◽  
Antonín Nikodem ◽  
Klára Jelenová ◽  
Aleš Klement

1999 ◽  
Vol 56 (3) ◽  
pp. 221-226 ◽  
Author(s):  
Daniel Epron ◽  
Lætitia Farque ◽  
Éric Lucot ◽  
Pierre-Marie Badot

2011 ◽  
Vol 71 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Ingrid Martinez G ◽  
Carlos Ovalle ◽  
Alejandro Del Pozo ◽  
Hamil Uribe ◽  
Natalia Valderrama V ◽  
...  

Weed Science ◽  
2011 ◽  
Vol 59 (1) ◽  
pp. 50-54 ◽  
Author(s):  
Jared J. Schmidt ◽  
Erin E. Blankenship ◽  
John L. Lindquist

Soil water availability is the most important factor limiting crop yield worldwide. Understanding crop and weed transpiration in response to water supply may provide valuable insight into the mechanisms of crop yield loss in water-limited environments. A greenhouse experiment was conducted to quantify corn and velvetleaf transpiration in response to drying soil. Five plants of each species were well watered by adding back the equivalent water loss each day to reach field capacity, and five plants were subjected to drought stress (dry-down) by not replacing lost water. Normalized daily transpiration of dry-down plants was regressed on soil water content expressed as the fraction of transpirable soil water (FTSW). The critical soil water content below which plants begin to close their stomates occurred at FTSWcr= 0.36 ± 0.015 for corn and 0.41 ± 0.018 for velvetleaf. Total water transpired did not differ among species. Velvetleaf also responded to drought by senescing its oldest leaves, whereas corn mainly maintained its leaf area but with rolled leaves during peak drought stress. During a short-term drought, corn is expected to perform better than velvetleaf because it maintains full transpiration to a lower FTSW and does not senesce its leaves. Under severe long-term drought, the species that closes its stomates at greater FTSWcrwill conserve water and increase its chances of survival. Moreover, senescing all but the youngest leaves may ensure at least some seed production. Research is needed to evaluate the effects of soil water supply on corn–velvetleaf interference in the field.


2002 ◽  
Vol 42 (6) ◽  
pp. 763 ◽  
Author(s):  
R. A. Sudmeyer ◽  
D. J. M. Hall ◽  
J. Eastham ◽  
M. A. Adams

This paper examines the effect severing lateral tree roots (root pruning) has on crop and tree growth and soil water content at 2 sites in the south-west of Western Australia. Crop and tree growth and soil water content were assessed in a Pinus pinaster windbreak system growing on 0.45–1.00 m of sand over clay, and crop growth was assessed adjacent to Eucalyptus globulus windbreaks growing on 4–5 m of sand. Crop yield was depressed by 23–52% within 2.5 times the tree height (H) of unpruned pines and by 44% within 2.5 H of pruned eucalypts. Depressed yields made cropping uneconomical within 1.5 H of the eucalypts and 1 H of the pines. Root pruning most improved crop yields where lateral tree roots were confined close to the soil surface and decreased in effectiveness as the depth to confining layer (clay) increased. Crop losses within 2.5 H of the pines were reduced from 39 to 14% in the year the trees were root pruned and were 25% 1 year after root pruning. Subsequent root pruning of the eucalypts did not improve crop yield. While root pruning severed lateral pine roots, tree growth was not significantly reduced. The principal cause of reduced crop yield near the trees appeared to be reduced soil moisture in the area occupied by tree roots. Competition for nutrients and light appeared to have little effect on crop yield. Root pruning can spatially separate tree and crop roots where the tree roots are confined close to the surface, and significantly improve crop yields without reducing tree growth.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Eszter Tóth ◽  
Sándor Koós ◽  
Csilla Farkas

AbstractThe aim of this study was to evaluate a measuring technique for determining soil CO2 efflux from large soil samples having undisturbed structure under controlled laboratory conditions. Further objectives were to use the developed measuring method for comparing soil CO2 efflux from samples, collected in three different soil management systems at various soil water content values. The experimental technique was tested and optimised for timing of sampling by taking air samples after 1, 3 and 6 hours of incubation. Based on the results, the incubation time was set to three hours. The CO2 efflux measured for different soil management systems was the highest in the no-till and the lowest in the ploughing treatment, which was in accordance with measurements on accessible organic carbon for microbes. An increase in CO2 efflux with increasing soil water content was found in the studied soil water content range. Our results indicate that soil respiration rates, measured directly after tillage operations, can highly differ from those measured long after.


2016 ◽  
Author(s):  
Luitgard Schwendenmann ◽  
Cate Macinnis-Ng

Abstract. Total soil CO2 efflux and its component fluxes, autotrophic and heterotrophic respiration, were measured in a native forest in northern Aotearoa-New Zealand. The forest is dominated by Agathis australis (kauri) and is on an acidic, clay rich soil. Soil CO2 efflux, volumentric soil water content and soil temperature were measured bi-weekly to monthly at 42 locations over 18 months. Trenching and regression analysis was used to partition the total soil CO2 efflux. The effect of tree structure was investigated by calculating an index of local contribution (Ic, based on tree size and distance to the measurement location) followed by correlation analysis between Ic and soil CO2 efflux, root biomass, litterfall and soil characteristics. The mean total soil CO2 efflux was 3.47 μmol m−2 s−1. Using uni- and bivariate models showed that soil temperature (< 40 %) and volumetric soil water content (< 20 %) were poor predictors of the temporal variation in total soil CO2 efflux. In contrast, a stronger temperature sensitivity (around 57 %) was found for heterotrophic respiration. Autotrophic respiration accounted for 25 (trenching) or 28 % (regression analysis) of total soil CO2 efflux. We found significant positive relationships between kauri tree size distribution (Ic) and soil CO2 efflux, root biomass and mineral soil CN ratio within 5–6 m of the measurement points. Using multiple regression analysis revealed that 97 % of the spatial variability in soil CO2 efflux in this kauri dominated stand was explained by root biomass and soil temperature. Our findings highlight the need to consider tree species effects and spatial patterns in soil carbon related studies.


2004 ◽  
Vol 18 (8) ◽  
pp. 1447-1465 ◽  
Author(s):  
Timothy R. Green ◽  
Robert H. Erskine

Sign in / Sign up

Export Citation Format

Share Document