scholarly journals Influence of Conservation Tillage and Soil Water Content on Crop Yield in Dryland Compacted Alfisol of Central Chile

2011 ◽  
Vol 71 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Ingrid Martinez G ◽  
Carlos Ovalle ◽  
Alejandro Del Pozo ◽  
Hamil Uribe ◽  
Natalia Valderrama V ◽  
...  
2014 ◽  
Vol 6 (4) ◽  
pp. 125 ◽  
Author(s):  
Anne Karuma ◽  
Peter Mtakwa ◽  
Nyambilila Amuri ◽  
Charles K. Gachene ◽  
Patrick Gicheru

Soil water conservation through tillage is one of the appropriate ways of addressing soil moisture deficit in rainfed agriculture. This study evaluated the effects of tillage practices on soil moisture conservation and crop yields in Mwala District, Eastern Kenya during the long rains (LR) and short rains (SR) of 2012/13. Six tillage systems: Disc plough (MB), Disc plough and harrowing (MBH), Ox-ploughing (OX), Subsoiling – ripping (SR), Hand hoe and Tied Ridges (HTR) and Hand hoe only (H) and, three cropping systems namely, sole maize, sole bean and maize - bean intercrop, were investigated in a split-plot design with four replicates. Data on soil water content was monitored at different weeks after planting and the crop yields at end of each growing season. A three-season average shows that soil water content and crop yields were higher in conventional tillage methods compared to the conservation tillage methods. Long term tillage experiments are thus required at different locations, under various environmental and soil conditions to validate the study findings.


Weed Science ◽  
2011 ◽  
Vol 59 (1) ◽  
pp. 50-54 ◽  
Author(s):  
Jared J. Schmidt ◽  
Erin E. Blankenship ◽  
John L. Lindquist

Soil water availability is the most important factor limiting crop yield worldwide. Understanding crop and weed transpiration in response to water supply may provide valuable insight into the mechanisms of crop yield loss in water-limited environments. A greenhouse experiment was conducted to quantify corn and velvetleaf transpiration in response to drying soil. Five plants of each species were well watered by adding back the equivalent water loss each day to reach field capacity, and five plants were subjected to drought stress (dry-down) by not replacing lost water. Normalized daily transpiration of dry-down plants was regressed on soil water content expressed as the fraction of transpirable soil water (FTSW). The critical soil water content below which plants begin to close their stomates occurred at FTSWcr= 0.36 ± 0.015 for corn and 0.41 ± 0.018 for velvetleaf. Total water transpired did not differ among species. Velvetleaf also responded to drought by senescing its oldest leaves, whereas corn mainly maintained its leaf area but with rolled leaves during peak drought stress. During a short-term drought, corn is expected to perform better than velvetleaf because it maintains full transpiration to a lower FTSW and does not senesce its leaves. Under severe long-term drought, the species that closes its stomates at greater FTSWcrwill conserve water and increase its chances of survival. Moreover, senescing all but the youngest leaves may ensure at least some seed production. Research is needed to evaluate the effects of soil water supply on corn–velvetleaf interference in the field.


2002 ◽  
Vol 42 (6) ◽  
pp. 763 ◽  
Author(s):  
R. A. Sudmeyer ◽  
D. J. M. Hall ◽  
J. Eastham ◽  
M. A. Adams

This paper examines the effect severing lateral tree roots (root pruning) has on crop and tree growth and soil water content at 2 sites in the south-west of Western Australia. Crop and tree growth and soil water content were assessed in a Pinus pinaster windbreak system growing on 0.45–1.00 m of sand over clay, and crop growth was assessed adjacent to Eucalyptus globulus windbreaks growing on 4–5 m of sand. Crop yield was depressed by 23–52% within 2.5 times the tree height (H) of unpruned pines and by 44% within 2.5 H of pruned eucalypts. Depressed yields made cropping uneconomical within 1.5 H of the eucalypts and 1 H of the pines. Root pruning most improved crop yields where lateral tree roots were confined close to the soil surface and decreased in effectiveness as the depth to confining layer (clay) increased. Crop losses within 2.5 H of the pines were reduced from 39 to 14% in the year the trees were root pruned and were 25% 1 year after root pruning. Subsequent root pruning of the eucalypts did not improve crop yield. While root pruning severed lateral pine roots, tree growth was not significantly reduced. The principal cause of reduced crop yield near the trees appeared to be reduced soil moisture in the area occupied by tree roots. Competition for nutrients and light appeared to have little effect on crop yield. Root pruning can spatially separate tree and crop roots where the tree roots are confined close to the surface, and significantly improve crop yields without reducing tree growth.


2019 ◽  
Vol 65 (No. 9) ◽  
pp. 442-448
Author(s):  
Igor Bogunović ◽  
Péter Gergő Kovács ◽  
Igor Dekemati ◽  
Ivica Kisić ◽  
István Balla ◽  
...  

Conservation tillage harmonizes soil protection with demands of the crop, soil and climate. The continuous conservation tillage improves soil properties and modifies impact of weather extremes. The aim of the paper was to investigate the changes in four soil physical states affected by soil conservation tillage and to evaluate soil water content in a critical period. The study was carried out on Chernozems applying six tillage treatments, that are loosening, ploughing, tine tillage (a deeper, and a shallower), disk tillage and direct drilling. The investigation suggested that soil conservation was the major solution resulting in the balanced water content (SWC) and penetration resistance values in both treatments under peculiar weather conditions. However, the crumb ratio and the crusted area resulted in significant differences between the treatments, presumably due to the level of surface preservation. Soil water content differed significantly between months, with higher contents in spring and lower values in the end of summer. The higher SWC expected at the beginning of the growing season was reliably fulfilled, but the SWC level for workabilty differed from the optimum.


2020 ◽  
Vol 197 ◽  
pp. 104521 ◽  
Author(s):  
Alfred Obia ◽  
Gerard Cornelissen ◽  
Vegard Martinsen ◽  
Andreas Botnen Smebye ◽  
Jan Mulder

2004 ◽  
Vol 18 (8) ◽  
pp. 1447-1465 ◽  
Author(s):  
Timothy R. Green ◽  
Robert H. Erskine

Sign in / Sign up

Export Citation Format

Share Document