scholarly journals Oxidative injury induced by hypochlorous acid to Ca-ATPase from sarcoplasmic reticulum of skeletal muscle and protective effect of trolox

2009 ◽  
Vol 28 (2) ◽  
pp. 195-209 ◽  
Author(s):  
M. Strosova ◽  
J. Karlovska ◽  
C. Spickett ◽  
T. Grune ◽  
Z. Orszagova ◽  
...  
1998 ◽  
Vol 84 (2) ◽  
pp. 425-430 ◽  
Author(s):  
Terence G. Favero ◽  
David Colter ◽  
Paul F. Hooper ◽  
Jonathan J. Abramson

Favero, Terence G., David Colter, Paul F. Hooper, and Jonathan J. Abramson. Hypochlorous acid inhibits Ca2+-ATPase from skeletal muscle sarcoplasmic reticulum. J. Appl. Physiol. 84(2): 425–430, 1998.—Hypochlorous acid (HOCl) is produced by polymorphonuclear leukocytes that migrate and adhere to endothelial cells as part of the inflammatory response to tissue injury. HOCl is an extremely toxic oxidant that can react with a variety of cellular components, and concentrations reaching 200 μM have been reported in some tissues. In this study, we show that HOCl interacts with the skeletal sarcoplasmic reticulum Ca2+-adenosinetriphosphatase (ATPase), inhibiting transport function. HOCl inhibits sarcoplasmic reticulum Ca2+-ATPase activity in a concentration-dependent manner with a concentration required to inhibit ATPase activity by 50% of 170 μM and with complete inhibition of activity at 3 mM. A concomitant reduction in free sulfhydryl groups after HOCl treatment was observed, paralleling the inhibition of ATPase activity. It was also observed that HOCl inhibited the binding of the fluorescent probe fluorescein isothiocyanate to the ATPase protein, indicating some structural damage may have occurred. These findings suggest that the reactive oxygen species HOCl inhibits ATPase activity via a modification of sulfhydryl groups on the protein, supporting the contention that reactive oxygen species disrupt the normal Ca2+-handling kinetics in muscle cells.


2010 ◽  
Vol 88 (2) ◽  
pp. 130-140
Author(s):  
Aude Lafoux ◽  
Alexandra Divet ◽  
Pascal Gervier ◽  
Corinne Huchet-Cadiou

In dystrophin-deficient skeletal muscle cells, in which Ca2+ homeostasis is disrupted and reactive oxygen species production is increased, we hypothesized that hypochlorous acid (HOCl), a strong H2O2-related free radical, damages contractile proteins and the sarcoplasmic reticulum. The aim of the present study was to investigate the effects of exposure to oxidative stress, generated by applying HOCl (100 µmol/L and 1 mmol/L), on the contractile function and sarcoplasmic reticulum properties of dystrophic mice. Experiments were performed on diaphragm muscle, which is severely affected in the mdx mouse, and the results were compared with those obtained in healthy (non-dystrophic) mice. In Triton-skinned fibres from C57BL/10 and mdx mice, 1 mmol/L HOCl increased myofibrillar Ca2+ sensitivity, but decreased maximal Ca2+-activated tension. In the presence of HOCl, higher concentrations of MgATP were required to produce rigor tensions. The interaction between HOCl and the Ca2+ uptake mechanisms was demonstrated using saponin-skinned fibres and sarcoplasmic reticulum vesicles. The results showed that HOCl, at micromolar or millimolar concentrations, can modify sarcoplasmic reticulum Ca2+ uptake and that this effect was more pronounced in diaphragm muscle from mdx mice. We conclude that in dystrophic diaphragm skeletal muscle cells, HOCl activates a cellular pathway that leads to an increase in the intracellular concentration of Ca2+.


Author(s):  
Joachim R. Sommer ◽  
Nancy R. Wallace

After Howell (1) had shown that ruthenium red treatment of fixed frog skeletal muscle caused collapse of the intermediate cisternae of the sarcoplasmic reticulum (SR), forming a pentalaminate structure by obi iterating the SR lumen, we demonstrated that the phenomenon involves the entire SR including the nuclear envelope and that it also occurs after treatment with other cations, including calcium (2,3,4).From these observations we have formulated a hypothesis which states that intracellular calcium taken up by the SR at the end of contraction causes the M rete to collapse at a certain threshold concentration as the first step in a subsequent centrifugal zippering of the free SR toward the junctional SR (JSR). This would cause a) bulk transport of SR contents, such as calcium and granular material (4) into the JSR and, b) electrical isolation of the free SR from the JSR.


Author(s):  
A. V. Somlyo ◽  
H. Shuman ◽  
A. P. Somlyo

Electron probe analysis of frozen dried cryosections of frog skeletal muscle, rabbit vascular smooth muscle and of isolated, hyperpermeab1 e rabbit cardiac myocytes has been used to determine the composition of the cytoplasm and organelles in the resting state as well as during contraction. The concentration of elements within the organelles reflects the permeabilities of the organelle membranes to the cytoplasmic ions as well as binding sites. The measurements of [Ca] in the sarcoplasmic reticulum (SR) and mitochondria at rest and during contraction, have direct bearing on their role as release and/or storage sites for Ca in situ.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
M Kim ◽  
J Chun ◽  
J Lee ◽  
J Choi ◽  
HA Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document