On Representations as a Sum of Consecutive Integers

1950 ◽  
Vol 2 ◽  
pp. 399-405 ◽  
Author(s):  
W. J. Leveque

1. Introduction. It is the object of this paper to investigate the function γ(m), the number of representations of m in the form(1) where . It is shown that γ(m) is always equal to the number of odd divisors of m, so that for example γ(2k) = 1, this representation being the number 2k itself. From this relationship the average order of γ(m) is deduced ; this result is given in Theorem 2. By a method due to Kac [2], it is shown in §3 that the number of positive integers for which γ(m) does not exceed a rather complicated function of n and ω, a real parameter, is asymptotically nD(ω), where D(ω) is the probability integral

1970 ◽  
Vol 13 (2) ◽  
pp. 255-259 ◽  
Author(s):  
R. A. Macleod ◽  
I. Barrodale

Using the theory of algebraic numbers, Mordell [1] has shown that the Diophantine equation1possesses only two solutions in positive integers; these are given by n = 2, m = 1, and n = 14, m = 5. We are interested in positive integer solutions to the generalized equation2and in this paper we prove for several choices of k and l that (2) has no solutions, in other cases the only solutions are given, and numerical evidence for all values of k and l for which max (k, l) ≤ 15 is also exhibited.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


1991 ◽  
Vol 43 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Tom C. Brown ◽  
Voijtech Rödl

Our main result is that if G(x1, …, xn) = 0 is a system of homogeneous equations such that for every partition of the positive integers into finitely many classes there are distinct y1,…, yn in one class such that G(y1, …, yn) = 0, then, for every partition of the positive integers into finitely many classes there are distinct Z1, …, Zn in one class such thatIn particular, we show that if the positive integers are split into r classes, then for every n ≥ 2 there are distinct positive integers x1, x1, …, xn in one class such thatWe also show that if [1, n6 − (n2 − n)2] is partitioned into two classes, then some class contains x0, x1, …, xn such that(Here, x0, x2, …, xn are not necessarily distinct.)


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


1958 ◽  
Vol 10 ◽  
pp. 222-229 ◽  
Author(s):  
J. R. Blum ◽  
H. Chernoff ◽  
M. Rosenblatt ◽  
H. Teicher

Let {Xn} (n = 1, 2 , …) be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers i 1, i 2, H 3 … , ik, the joint distribution of depends merely on k and is independent of the integers i 1, i 2, … , i k. It was shown by De Finetti (3) that the probability measure for any interchangeable process is a mixture of probability measures of processes each consisting of independent and identically distributed random variables.


2015 ◽  
Vol 58 (4) ◽  
pp. 858-868 ◽  
Author(s):  
Kenneth S. Williams

AbstractLet denote the Dedekind eta function. We use a recent productto- sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly ten eta quotientssuch that the Fourier coefficients c(n) vanish for all positive integers n in each of infinitely many non-overlapping arithmetic progressions. For example, we show that if we have c(n) = 0 for all n in each of the arithmetic progressions


1990 ◽  
Vol 42 (2) ◽  
pp. 315-341 ◽  
Author(s):  
Stéphane Louboutin

Frobenius-Rabinowitsch's theorem provides us with a necessary and sufficient condition for the class-number of a complex quadratic field with negative discriminant D to be one in terms of the primality of the values taken by the quadratic polynomial with discriminant Don consecutive integers (See [1], [7]). M. D. Hendy extended Frobenius-Rabinowitsch's result to a necessary and sufficient condition for the class-number of a complex quadratic field with discriminant D to be two in terms of the primality of the values taken by the quadratic polynomials and with discriminant D (see [2], [7]).


1966 ◽  
Vol 9 (4) ◽  
pp. 515-516
Author(s):  
Paul G. Bassett

Let n be an arbitrary but fixed positive integer. Let Tn be the set of all monotone - increasing n-tuples of positive integers:1Define2In this note we prove that ϕ is a 1–1 mapping from Tn onto {1, 2, 3,…}.


2020 ◽  
Vol 150 (5) ◽  
pp. 2682-2718 ◽  
Author(s):  
Boumediene Abdellaoui ◽  
Antonio J. Fernández

AbstractLet$\Omega \subset \mathbb{R}^{N} $, N ≽ 2, be a smooth bounded domain. For s ∈ (1/2, 1), we consider a problem of the form $$\left\{\begin{array}{@{}ll} (-\Delta)^s u = \mu(x)\, \mathbb{D}_s^{2}(u) + \lambda f(x), & {\rm in}\,\Omega, \\ u= 0, & {\rm in}\,\mathbb{R}^{N} \setminus \Omega,\end{array}\right.$$ where λ > 0 is a real parameter, f belongs to a suitable Lebesgue space, $\mu \in L^{\infty}$ and $\mathbb {D}_s^2$ is a nonlocal ‘gradient square’ term given by $$\mathbb{D}_s^2 (u) = \frac{a_{N,s}}{2} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}\,{\rm d}y.$$ Depending on the real parameter λ > 0, we derive existence and non-existence results. The proof of our existence result relies on sharp Calderón–Zygmund type regularity results for the fractional Poisson equation with low integrability data. We also obtain existence results for related problems involving different nonlocal diffusion terms.


Sign in / Sign up

Export Citation Format

Share Document