Extremal Point and Edge Sets in n-Graphs

1969 ◽  
Vol 21 ◽  
pp. 1069-1075
Author(s):  
N. Sauer

A set of points (edges) of a graph is independent if no two distinct members of the set are adjacent. Gallai (1) observed that, if A0 (B0) is the minimum number of points (edges) of a finite graph covering all the edges (points) and A1 (B1) is the maximum number of independent points (edges), then:holds, where m is the number of points of the graph.The concepts of independence and covering are generalized in various ways for n-graphs. In this paper we establish certain connections between the corresponding extreme numbers analogous to the above result of Gallai.Ray-Chaudhuri considered (2) independence and covering problems in n-graphs and determined algorithms for finding the minimal cover and some associated numbers.

1945 ◽  
Vol 35 ◽  
pp. 10-13 ◽  
Author(s):  
W. L. Edge

The pencil of quartic curveswhere x, y, z are homogeneous coordinates in a plane, was encountered by Ciani [Palermo Rendiconli, Vol. 13, 1899] in his search for plane quartic curves that were invariant under harmonic inversions. If x, y, z undergo any permutation the ternary quartic form on the left of (1) is not altered; nor is it altered if any, or all, of x, y, z be multiplied by −1. There thus arises an octahedral group G of ternary collineations for which every curve of the pencil is invariant.Since (1) may also be writtenthe four linesare, as Ciani pointed out, bitangents, at their intersections with the conic C whose equation is x2 + y2 + z2 = 0, to every quartic of the pencil. The 16 base points of the pencil are thus all accounted for—they consist of these eight contacts counted twice—and this set of points must of course be invariant under G. Indeed the 4! collineations of G are precisely those which give rise to the different permutations of the four lines (2), a collineation in a plane being determined when any four non-concurrent lines and the four lines which are to correspond to them are given. The quadrilateral formed by the lines (2) will be called q.


2021 ◽  
Vol 21 (1) ◽  
pp. 15-22
Author(s):  
Aaron Lin ◽  
Konrad Swanepoel

Abstract An ordinary hypersphere of a set of points in real d-space, where no d + 1 points lie on a (d - 2)-sphere or a (d - 2)-flat, is a hypersphere (including the degenerate case of a hyperplane) that contains exactly d + 1 points of the set. Similarly, a (d + 2)-point hypersphere of such a set is one that contains exactly d + 2 points of the set. We find the minimum number of ordinary hyperspheres, solving the d-dimensional spherical analogue of the Dirac–Motzkin conjecture for d ⩾ 3. We also find the maximum number of (d + 2)-point hyperspheres in even dimensions, solving the d-dimensional spherical analogue of the orchard problem for even d ⩾ 4.


1999 ◽  
Vol 09 (04n05) ◽  
pp. 471-493 ◽  
Author(s):  
LEONIDAS J. GUIBAS ◽  
JEAN-CLAUDE LATOMBE ◽  
STEVEN M. LAVALLE ◽  
DAVID LIN ◽  
RAJEEV MOTWANI

This paper addresses the problem of planning the motion of one or more pursuers in a polygonal environment to eventually "see" an evader that is unpredictable, has unknown initial position, and is capable of moving arbitrarily fast. This problem was first introduced by Suzuki and Yamashita. Our study of this problem is motivated in part by robotics applications, such as surveillance with a mobile robot equipped with a camera that must find a moving target in a cluttered workspace. A few bounds are introduced, and a complete algorithm is presented for computing a successful motion strategy for a single pursuer. For simply-connected free spaces, it is shown that the minimum number of pursuers required is Θ( lg  n). For multiply-connected free spaces, the bound is [Formula: see text] pursuers for a polygon that has n edges and h holes. A set of problems that are solvable by a single pursuer and require a linear number of recontaminations is shown. The complete algorithm searches a finite graph that is constructed on the basis of critical information changes. It has been implemented and computed examples are shown.


2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


1973 ◽  
Vol 25 (4) ◽  
pp. 687-692 ◽  
Author(s):  
John L. Leonard

In a finite graph with no loops nor multiple edges, two points a and b are said to be connected by an r-way, or more explicitly, by a line r-way a — b if there are r paths, no two of which have lines in common (although they may share common points), which join a to b. In this note we demonstrate that any graph with n points and 3n — 2 or more lines must contain a pair of points joined by a 6-way, and that 3n — 2 is the minimum number of lines which guarantees the presence of a 6-way in a graph of n points.In the language of [3], this minimum number of lines needed to guarantee a 6-way is denoted U(n). For the background of this problem, the reader is referred to [3].


2013 ◽  
Vol 23 (06) ◽  
pp. 461-477 ◽  
Author(s):  
MINATI DE ◽  
GAUTAM K. DAS ◽  
PAZ CARMI ◽  
SUBHAS C. NANDY

In this paper, we consider constant factor approximation algorithms for a variant of the discrete piercing set problem for unit disks. Here a set of points P is given; the objective is to choose minimum number of points in P to pierce the unit disks centered at all the points in P. We first propose a very simple algorithm that produces 12-approximation result in O(n log n) time. Next, we improve the approximation factor to 4 and then to 3. The worst case running time of these algorithms are O(n8 log n) and O(n15 log n) respectively. Apart from the space required for storing the input, the extra work-space requirement for each of these algorithms is O(1). Finally, we propose a PTAS for the same problem. Given a positive integer k, it can produce a solution with performance ratio [Formula: see text] in nO(k) time.


1989 ◽  
Vol 32 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Paul D. Humke ◽  
M. Laczkovich

Let C[0,1] be the Banach space of continuous functions defined on [0,1] and let C be the set of functions f∈C[0,1] mapping [0,1] into itself. If f∈C, fk will denote the kth iterate of f and we put Ck = {fk:f∈C;}. The set of increasing (≡ nondecreasing) and decreasing (≡ nonincreasing) functions in C will be denoted by ℐ and D, respectively. If a function f is defined on an interval I, we let C(f) denote the set of points at which f is locally constant, i.e.We let N denote the set of positive integers and NN denote the Baire space of sequences of positive integers.


1994 ◽  
Vol 59 (4) ◽  
pp. 1228-1244 ◽  
Author(s):  
Gaisi Takeuti

Let L0 be a language on ℕ consisting of 0, 1, +, ∸, ·, ⌊½a⌋, ∣a∣, #, ∧(a,b), ∨(a,b), ¬(a), ≤ (a,b), and μx ≤ ∣s∣t(x). Here μx ≤ ∣s∣t(x) is the smallest number x ≤ ∣s∣ satisfying t(x) > 0 and 0 if there exist no such x and we stipulate that if s and t(a) are terms in Lo, then μx ≤ ∣s∣t(x) is also a term in Lo. The defining axioms of functions ∧(a,b), ∨(a,b), ¬(a), ≤ (a,b) are as follows:Let L a language on ℕ with only predicate constant = and L0 ⊆ L. Let f (b, a1,…,am) be a function for ℕm+1 into ℕ. We say “f is weakly expressed by terms t1(b, a1,…, am),…, tr(b, a1,…, am) in L” if for every b, a1,…, am ∈ ℕ, f (b, a1,…,am) is equal to one of ti(b, a1, …, am). The critical number of b in f with respect to L is the minimum number n such that whenever f(b, a1,…, an) is weakly expressed by terms t1(b, a1, …, an),…, the number of occurrences of b in some ti(b, a1,…, an) is at least n.As is defined in [1], a function f is defined by a limited iteration from g and h with respect to L iff the following holds: Let τ be defined aswith the condition ; and is defined bywhere and are terms in L. We say “f is defined by a short limited iteration from g and h” if is defined bywhere τ, s, t are the same as above satisfying the condition .


1999 ◽  
Vol 36 (04) ◽  
pp. 1101-1115 ◽  
Author(s):  
Olle Häggström ◽  
Johan Jonasson

The random triangle model was recently introduced as a random graph model that captures the property of transitivity that is often found in social networks, i.e. the property that given that two vertices are second neighbors, they are more likely to be neighbors. For parameters p ∊ [0,1] and q ≥ 1, and a finite graph G = (V, E), it assigns to elements η of {0,1} E probabilities which are proportional to where t(η) is the number of triangles in the open subgraph. In this paper the behavior of the random triangle model on the two-dimensional triangular lattice is studied. By mapping the system onto an Ising model with external field on the hexagonal lattice, it is shown that phase transition occurs if and only if p = (q−1)−2/3 and q > q c for a critical value q c which turns out to equal It is furthermore demonstrated that phase transition cannot occur unless p = p c (q), the critical value for percolation of open edges for given q. This implies that for q ≥ q c , p c (q) = (q−1)−2/3.


Sign in / Sign up

Export Citation Format

Share Document