On Operator Algebras and Invariant Subspaces

1969 ◽  
Vol 21 ◽  
pp. 1178-1181 ◽  
Author(s):  
Chandler Davis ◽  
Heydar Radjavi ◽  
Peter Rosenthal

If is a collection of operators on the complex Hilbert space , then the lattice of all subspaces of which are invariant under every operator in is denoted by Lat . An algebra of operators on is defined (3; 4) to be reflexive if for every operator B on the inclusion Lat ⊆ Lat B implies .Arveson (1) has proved the following theorem. (The abbreviation “m.a.s.a.” stands for “maximal abelian self-adjoint algebra”.)ARVESON's THEOREM. Ifis a weakly closed algebra which contains an m.a.s.a.y and if Lat, then is the algebra of all operators on .A generalization of Arveson's Theorem was given in (3). Another generalization is Theorem 2 below, an equivalent form of which is Corollary 3. This theorem was motivated by the following very elementary proof of a special case of Arveson's Theorem.

1981 ◽  
Vol 33 (6) ◽  
pp. 1291-1308 ◽  
Author(s):  
Mehdi Radjabalipour

For each natural number n we define to be the class of all weakly closed algebras of (bounded linear) operators on a separable Hilbert space H such that the lattice of invariant subspaces of and (alg lat )(n) are the same. (If A is an operator, A(n) denotes the direct sum of n copies of A; if is a collection of operators,. Also, alg lat denotes the algebra of all operators leaving all invariant subspaces of invariant.) In the first section we show that . In Section 2 we prove that every weakly closed algebra containing a maximal abelian self adjoint algebra (m.a.s.a.) is , and that . It is also shown that certain algebras containing a m.a.s.a. are necessarily reflexive.


1974 ◽  
Vol 15 (1) ◽  
pp. 54-59 ◽  
Author(s):  
R. H. Kelly

A proof is given here of a theorem of Sarason [9, Theorem 2], the proof being valid in an arbitrary (non-separable) complex Hilbert space. Sarason's proof uses a theorem and lemma of Wermer which may both fail when the separability hypothesis is omitted [3]. By using a special case of Sarason's theorem and another result of Sarason [10, Lemma 1] a simplified and shortened proof is given of a result of Scroggs [11, Corollary 1].


1974 ◽  
Vol 26 (3) ◽  
pp. 565-575 ◽  
Author(s):  
W. E. Longstaff

A collection of subspaces of a Hilbert space is called a nest if it is totally ordered by inclusion. The set of all bounded linear operators leaving invariant each member of a given nest forms a weakly-closed algebra, called a nest algebra. Nest algebras were introduced by J. R. Ringrose in [9]. The present paper is concerned with generating nest algebras as weakly-closed algebras, and in particular with the following question which was first raised by H. Radjavi and P. Rosenthal in [8], viz: Is every nest algebra on a separable Hilbert space generated, as a weakly-closed algebra, by two operators? That the answer to this question is affirmative is proved by first reducing the problem using the main result of [8] and then by using a characterization of nests due to J. A. Erdos [2].


1975 ◽  
Vol 20 (2) ◽  
pp. 159-164
Author(s):  
W. E. Longstaff

For any collection of closed subspaces of a complex Hilbert space the set of bounded operators that leave invariant all the members of the collection is a weakly-closed algebra. The class of such algebras is precisely the class of reflexive algebras as defined for example in Radjavi and Rosenthal (1969) and contains the class of von Neumann algebras.In this paper we consider the problem of when such algebras are finitely generated as weakly-closed algebras. It is to be hoped that analysis of this problem may shed some light on the famous unsolved problem of whether every von Neumann algebra on a separable Hilbert space is finitely generated. The case where the underlying space is separable and the collection of subspaces is totally ordered is dealt with in Longstaff (1974). In the present paper the result of Longstaff (1974) is generalized to the case of a direct product of countably many totally ordered collections each on a separable space. Also a method of obtaining non-finitely generated reflexive algebras is given.


1966 ◽  
Vol 18 ◽  
pp. 1152-1160 ◽  
Author(s):  
Arlen Brown ◽  
Carl Pearcy

Let denote a separable, complex Hilbert space, and let R be a von Neumann algebra acting on . (A von Neumann algebra is a weakly closed, self-adjoint algebra of operators that contains the identity operator on its underlying space.) An element A of R is a commutator in R if there exist operators B and C in R such that A = BC — CB. The problem of specifying exactly which operators are commutators in R has been solved in certain special cases; e.g. if R is an algebra of type In (n < ∞) (2), and if R is a factor of type I∞ (1). It is the purpose of this note to treat the same problem in case R is a factor of type III. Our main result is the following theorem.


2018 ◽  
Vol 26 (1) ◽  
pp. 15-29
Author(s):  
Mohammad Ashraf ◽  
Shakir Ali ◽  
Bilal Ahmad Wani

Abstract Let ℌ be an in finite-dimensional complex Hilbert space and A be a standard operator algebra on ℌ which is closed under the adjoint operation. It is shown that every nonlinear *-Lie higher derivation D = {δn}gn∈N of A is automatically an additive higher derivation on A. Moreover, D = {δn}gn∈N is an inner *-higher derivation.


1976 ◽  
Vol 28 (5) ◽  
pp. 1062-1066 ◽  
Author(s):  
W. E. Longstaff

If A is a (linear) transformation acting on a (finitedimensional, non-zero, complex) Hilbert space H the family of (linear) subspaces of H which are invariant under A is denoted by Lat A. The family of subspaces of H which are invariant under every transformation commuting with A is denoted by Hyperlat A. Since A commutes with itself we have Hyperlat A ⊆ Lat A. Set-theoretic inclusion is an obvious partial order on both these families of subspaces. With this partial order each is a complete lattice; joins being (linear) spans and meets being set-theoretic intersections. Also, each has H as greatest element and the zero subspace (0) as least element. With this lattice structure being understood, Lat A (respectively Hyperlat A) is called the lattice of invariant (respectively, hyper invariant) subspaces of A.


1976 ◽  
Vol 28 (1) ◽  
pp. 19-23 ◽  
Author(s):  
W. E. Longstaff

If H is a (complex) Hilbert space and is a collection of (closed linear) subspaces of H it is easily shown that the set of all (bounded linear) operators acting on H which leave every member of invariant is a weakly closed operator algebra containing the identity operator. This algebra is denoted by Alg . In the study of such algebras it may be supposed [4] that is a subspace lattice i.e. that is closed under the formation of arbitrary intersections and arbitrary (closed linear) spans and contains both the zero subspace (0) and H. The class of such algebras is precisely the class of reflexive algebras [3].


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1918
Author(s):  
Oleh Lopushansky ◽  
Renata Tłuczek-Piȩciak

The paper describes approximations properties of monotonically increasing sequences of invariant subspaces of a self-adjoint operator, as well as their symmetric generalizations in a complex Hilbert space, generated by its positive powers. It is established that the operator keeps its spectrum over the dense union of these subspaces, equipped with quasi-norms, and that it is contractive. The main result is an inequality that provides an accurate estimate of errors for the best approximations in Hilbert spaces by these invariant subspaces.


1982 ◽  
Vol 34 (5) ◽  
pp. 1025-1035 ◽  
Author(s):  
Shlomo Rosenoer

An algebra of bounded operators on a Hilbert space H is said to be reductive if it is unital, weakly closed and has the property that if M ⊂ H is a (closed) subspace invariant for every operator in , then so is M⊥. Loginov and Šul'man [6] and Rosenthal [9] proved that if is an abelian reductive algebra which commutes with a compact operator K having a dense range, then is a von Neumann algebra. Note that in this case every invariant subspace of is spanned by one-dimensional invariant subspaces. Indeed, the operator KK* commutes with . Hence its eigenspaces are invariant for , so that H is an orthogonal sum of the finite-dimensional invariant subspaces of From this our claim easily follows.


Sign in / Sign up

Export Citation Format

Share Document