Extended Chromatic Polynomials

1972 ◽  
Vol 24 (3) ◽  
pp. 492-501 ◽  
Author(s):  
Andrew Sobczyk ◽  
James O. Gettys

Let G be a finite graph with non-empty vertex set (G) and edge set (G) (see [2]). Let λ be a positive integer. Tutte [5] defines a λ-colouring of G as a mapping of (G) into the set Iλ = {1, 2, 3, …, λ} with the property that two ends of any edge are mapped onto distinct integers. The elements of Iλ are commonly called “colours.” If P(G, λ) represents the number of λ-colourings of G, it is well known that P(G, λ) can be expressed as a polynomial in λ. For this reason P(G, λ) is usually referred to as the chromatic polynomial of G.The chromatic polynomial P(G, λ) was first suggested as an approach to the four-colour conjecture. To quote Tutte [5]: ”… many people are specially interested in the value λ = 4.

2008 ◽  
Vol 17 (2) ◽  
pp. 225-238 ◽  
Author(s):  
ROBERTO FERNÁNDEZ ◽  
ALDO PROCACCI

We prove that the chromatic polynomial$P_\mathbb{G}(q)$of a finite graph$\mathbb{G}$of maximal degree Δ is free of zeros for |q| ≥C*(Δ) withThis improves results by Sokal and Borgs. Furthermore, we present a strengthening of this condition for graphs with no triangle-free vertices.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Mamo Abebe Ashebo ◽  
V. N. Srinivasa Rao Repalle

Coloring of fuzzy graphs has many real life applications in combinatorial optimization problems like traffic light system, exam scheduling, register allocation, etc. In this paper, the concept of fuzzy chromatic polynomial of fuzzy graph is introduced and defined based on α-cuts of fuzzy graph. Two different types of fuzziness to fuzzy graph are considered in the paper. The first type was fuzzy graph with crisp vertex set and fuzzy edge set and the second type was fuzzy graph with fuzzy vertex set and fuzzy edge set. Depending on this, the fuzzy chromatic polynomials for some fuzzy graphs are discussed. Some interesting remarks on fuzzy chromatic polynomial of fuzzy graphs have been derived. Further, some results related to the concept are proved. Lastly, fuzzy chromatic polynomials for complete fuzzy graphs and fuzzy cycles are studied and some results are obtained.


10.37236/4412 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Dae Hyun Kim ◽  
Alexander H. Mun ◽  
Mohamed Omar

Given a group $G$ of automorphisms of a graph $\Gamma$, the orbital chromatic polynomial $OP_{\Gamma,G}(x)$ is the polynomial whose value at a positive integer $k$ is the number of orbits of $G$ on proper $k$-colorings of $\Gamma.$ Cameron and Kayibi introduced this polynomial as a means of understanding roots of chromatic polynomials. In this light, they posed a problem asking whether the real roots of the orbital chromatic polynomial of any graph are bounded above by the largest real root of its chromatic polynomial. We resolve this problem in a resounding negative by not only constructing a counterexample, but by providing a process for generating families of counterexamples. We additionally begin the program of finding classes of graphs whose orbital chromatic polynomials have real roots bounded above by the largest real root of their chromatic polynomials; in particular establishing this for many outerplanar graphs.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 193
Author(s):  
Ruixue Zhang ◽  
Fengming Dong ◽  
Meiqiao Zhang

A mixed hypergraph H is a triple (X,C,D), where X is a finite set and each of C and D is a family of subsets of X. For any positive integer λ, a proper λ-coloring of H is an assignment of λ colors to vertices in H such that each member in C contains at least two vertices assigned the same color and each member in D contains at least two vertices assigned different colors. The chromatic polynomial of H is the graph-function counting the number of distinct proper λ-colorings of H whenever λ is a positive integer. In this article, we show that chromatic polynomials of mixed hypergraphs under certain conditions are zero-free in the intervals (−∞,0) and (0,1), which extends known results on zero-free intervals of chromatic polynomials of graphs and hypergraphs.


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


1984 ◽  
Vol 16 (03) ◽  
pp. 618-637 ◽  
Author(s):  
Lajos Takács

Let K be a finite graph with vertex set V = {x 0, x 1, …, xσ –1} and automorphism group G. It is assumed that G acts transitively on V. We can imagine that the vertices of K represent σ cities and a traveler visits the cities in a series of random flights. The traveler starts at a given city and in each flight, independently of the past journey, chooses a city at random as the destination. Denote by vn (n = 1, 2, …) the location of the traveler at the end of the nth flight, and by v 0 the initial location. It is assumed that the transition probabilities P{vn = xj | vn –1 = xi }, xi ϵ V, xj ϵ V, do not depend on n and are invariant under the action of G on V. The main result of this paper consists in determining p(n), the probability that the traveler returns to the initial position at the end of the nth flight.


Author(s):  
I. H. Agustin ◽  
M. I. Utoyo ◽  
Dafik ◽  
M. Venkatachalam ◽  
Surahmat

A total k-labeling is a function fe from the edge set to first natural number ke and a function fv from the vertex set to non negative even number up to 2kv, where k=maxke,2kv. A vertex irregular reflexivek-labeling of a simple, undirected, and finite graph G is total k-labeling, if for every two different vertices x and x′ of G, wtx≠wtx′, where wtx=fvx+Σxy∈EGfexy. The minimum k for graph G which has a vertex irregular reflexive k-labeling is called the reflexive vertex strength of the graph G, denoted by rvsG. In this paper, we determined the exact value of the reflexive vertex strength of any graph with pendant vertex which is useful to analyse the reflexive vertex strength on sunlet graph, helm graph, subdivided star graph, and broom graph.


2014 ◽  
Vol 13 (05) ◽  
pp. 1350162 ◽  
Author(s):  
YANGJIANG WEI ◽  
GAOHUA TANG ◽  
JIZHU NAN

For a finite commutative ring R and a positive integer k ≥ 2, we construct an iteration digraph G(R, k) whose vertex set is R and for which there is a directed edge from a ∈ R to b ∈ R if b = ak. In this paper, we investigate the iteration digraphs G(𝔽prCn, k) of 𝔽prCn, the group ring of a cyclic group Cn over a finite field 𝔽pr. We study the cycle structure of G(𝔽prCn, k), and explore the symmetric digraphs. Finally, we obtain necessary and sufficient conditions on 𝔽prCn and k such that G(𝔽prCn, k) is semiregular.


2021 ◽  
Vol 6 (10) ◽  
pp. 11508-11515
Author(s):  
Zhiqun Li ◽  
◽  
Huadong Su

<abstract><p>Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document