The Existence of Continuable Solutions of a Second Order Differential Equation

1977 ◽  
Vol 29 (3) ◽  
pp. 472-479 ◽  
Author(s):  
G. J. Butler

A much-studied equation in recent years has been the second order nonlinear ordinary differential equationwhere q and f are continuous on the real line and, in addition, f is monotone increasing with yf(y) > 0 for y ≠ 0. Although the original interest in (1) lay largely with the case that q﹛t) ≧ 0 for all large values of t, a number of papers have recently appeared in which this sign restriction is removed.

1989 ◽  
Vol 41 (2) ◽  
pp. 321-340 ◽  
Author(s):  
CH. G. Philos

This paper is concerned with the question of oscillation of the solutions of second order superlinear ordinary differential equations with alternating coefficients.Consider the second order nonlinear ordinary differential equationwhere a is a continuous function on the interval [t0, ∞), t0 > 0, and / is a continuous function on the real line R, which is continuously differentia t e , except possibly at 0, and satisfies.


1969 ◽  
Vol 12 (1) ◽  
pp. 79-84 ◽  
Author(s):  
R.R. Stevens

We consider the second order differential equation(1)with the assumptions that(2) f(x) is continuous (- ∞ < x < ∞) and p(t) is continuous and bounded: |p(t)| ≤ E, - ∞ < t < ∞.Also, throughout this paper, F(x) denotes an antiderivative of f(x).


Author(s):  
B.I. Efendiev ◽  

For an ordinary second-order differential equation with an operator of continuously distributed differentiation with variable coefficients, a solution to the Dirichlet problem is constructed using the Green’s function method.


2015 ◽  
Vol 12 (4) ◽  
pp. 822-825
Author(s):  
Baghdad Science Journal

In this paper we prove the boundedness of the solutions and their derivatives of the second order ordinary differential equation x ?+f(x) x ?+g(x)=u(t), under certain conditions on f,g and u. Our results are generalization of those given in [1].


1930 ◽  
Vol 2 (2) ◽  
pp. 71-82 ◽  
Author(s):  
W. L. Ferrar

It is well known that the polynomial in x,has the following properties:—(A) it is the coefficient of tn in the expansion of (1–2xt+t2)–½;(B) it satisfies the three-term recurrence relation(C) it is the solution of the second order differential equation(D) the sequence Pn(x) is orthogonal for the interval (— 1, 1),i.e. whenSeveral other familiar polynomials, e.g., those of Laguerre Hermite, Tschebyscheff, have properties similar to some or all of the above. The aim of the present paper is to examine whether, given a sequence of functions (polynomials or not) which has one of these properties, the others follow from it : in other words we propose to examine the inter-relation of the four properties. Actually we relate each property to the generating function.


2019 ◽  
Vol 149 (5) ◽  
pp. 1135-1152 ◽  
Author(s):  
José Godoy ◽  
Manuel Zamora

AbstractAs a consequence of the main result of this paper efficient conditions guaranteeing the existence of a T −periodic solution to the second-order differential equation $${u}^{\prime \prime} = \displaystyle{{h(t)} \over {u^\lambda }}$$are established. Here, h ∈ L(ℝ/Tℤ) is a piecewise-constant sign-changing function and the non-linear term presents a weak singularity at 0 (i.e. λ ∈ (0, 1)).


1949 ◽  
Vol 1 (2) ◽  
pp. 191-198 ◽  
Author(s):  
E. C. Titchmarsh

The Green's function G(x, ξ, λ) associated with the differential equation is of importance in the theory of the expansion of an arbitrary function in terms of the solutions of the differential equation. It is proved that this function is unique if q(x) ≧ — Ax2— B, where A and B are positive constants or zero. A similar theorem is proved for the Green's function G(x, y, ξ, η, λ) associated with the partial differential equation


Author(s):  
B.I. Efendiev ◽  

In this paper, we construct the fundamental solution for ordinary second-order differential equation with continuously distributed differentiation operator. With the help of fundamental solution the solution of the Cauchy problem is written out.


1965 ◽  
Vol 5 (1) ◽  
pp. 8-16 ◽  
Author(s):  
D. E. Daykin ◽  
K. W. Chang

In this note we discuss the stability at the origin of the solutions of the differential equation where a dot indicates a differentiation with respect to time, and α, β are real-valued functions of any arguments. We tacitly assume that α, β are such that solutions to (1) do in fact exist. Under the transformation equation (1) takes the equivalent familiar form .


Sign in / Sign up

Export Citation Format

Share Document