Longest Cycles in 3-Connected 3-Regular Graphs

1980 ◽  
Vol 32 (4) ◽  
pp. 987-992 ◽  
Author(s):  
J. A. Bondy ◽  
M. Simonovits

In this paper, we study the following question: How long a cycle must there be in a 3-connected 3-regular graph on n vertices? For planar graphs this question goes back to Tait [6], who conjectured that any planar 3-connected 3-regular graph is hamiltonian. Tutte [7] disproved this conjecture by finding a counterexample on 46 vertices. Using Tutte's example, Grunbaum and Motzkin [3] constructed an infinite family of 3-connected 3-regular planar graphs such that the length of a longest cycle in each member of the family is at most nc, where c = 1 – 2–17 and n is the number of vertices. The exponent c was subsequently reduced by Walther [8, 9] and by Grùnbaum and Walther [4].

d'CARTESIAN ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 103
Author(s):  
Arthur Wulur ◽  
Benny Pinontoan ◽  
Mans Mananohas

A graph G consists of non-empty set of vertex/vertices (also called node/nodes) and the set of lines connecting two vertices called edge/edges. The vertex set of a graph G is denoted by V(G) and the edge set is denoted by E(G). A Rectilinear Monotone r-Regular Planar Graph is a simple connected graph that consists of vertices with same degree and horizontal or diagonal straight edges without vertical edges and edges crossing. This research shows that there are infinite family of rectilinear monotone r-regular planar graphs for r = 3and r = 4. For r = 5, there are two drawings of rectilinear monotone r-regular planar graphs with 12 vertices and 16 vertices. Keywords: Monotone Drawings, Planar Graphs, Rectilinear Graphs, Regular Graphs


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


2021 ◽  
pp. 97-104
Author(s):  
M. B. Abrosimov ◽  
◽  
S. V. Kostin ◽  
I. V. Los ◽  
◽  
...  

In 2015, the results were obtained for the maximum number of vertices nk in regular graphs of a given order k with a diameter 2: n2 = 5, n3 = 10, n4 = 15. In this paper, we investigate a similar question about the largest number of vertices npk in a primitive regular graph of order k with exponent 2. All primitive regular graphs with exponent 2, except for the complete one, also have diameter d = 2. The following values were obtained for primitive regular graphs with exponent 2: np2 = 3, np3 = 4, np4 = 11.


1966 ◽  
Vol 18 ◽  
pp. 1091-1094 ◽  
Author(s):  
Clark T. Benson

In (3) Tutte showed that the order of a regular graph of degree d and even girth g > 4 is greater than or equal toHere the girth of a graph is the length of the shortest circuit. It was shown in (2) that this lower bound cannot be attained for regular graphs of degree > 2 for g ≠ 6, 8, or 12. When this lower bound is attained, the graph is called minimal. In a group-theoretic setting a similar situation arose and it was noticed by Gleason that minimal regular graphs of girth 12 could be constructed from certain groups. Here we construct these graphs making only incidental use of group theory. Also we give what is believed to be an easier construction of minimal regular graphs of girth 8 than is given in (2). These results are contained in the following two theorems.


10.37236/3752 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Catherine Greenhill ◽  
Matthew Kwan ◽  
David Wind

Let $d\geq 3$ be a fixed integer.   We give an asympotic formula for the expected number of spanning trees in a uniformly random $d$-regular graph with $n$ vertices. (The asymptotics are as $n\to\infty$, restricted to even $n$ if $d$ is odd.) We also obtain the asymptotic distribution of the number of spanning trees in a uniformly random cubic graph, and conjecture that the corresponding result holds for arbitrary (fixed) $d$. Numerical evidence is presented which supports our conjecture.


10.37236/1760 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Arne Hoffmann ◽  
Lutz Volkmann

In this note we examine the connection between vertices of high eccentricity and the existence of $k$-factors in regular graphs. This leads to new results in the case that the radius of the graph is small ($\leq 3$), namely that a $d$-regular graph $G$ has all $k$-factors, for $k|V(G)|$ even and $k\le d$, if it has at most $2d+2$ vertices of eccentricity $>3$. In particular, each regular graph $G$ of diameter $\leq3$ has every $k$-factor, for $k|V(G)|$ even and $k\le d$.


2011 ◽  
Vol 32 (6) ◽  
pp. 1805-1835 ◽  
Author(s):  
MIKLÓS ABÉRT ◽  
GÁBOR ELEK

AbstractWe study profinite actions of residually finite groups in terms of weak containment. We show that two strongly ergodic profinite actions of a group are weakly equivalent if and only if they are isomorphic. This allows us to construct continuum many pairwise weakly inequivalent free actions of a large class of groups, including free groups and linear groups with property (T). We also prove that for chains of subgroups of finite index, Lubotzky’s property (τ) is inherited when taking the intersection with a fixed subgroup of finite index. That this is not true for families of subgroups in general leads to the question of Lubotzky and Zuk: for families of subgroups, is property (τ) inherited by the lattice of subgroups generated by the family? On the other hand, we show that for families of normal subgroups of finite index, the above intersection property does hold. In fact, one can give explicit estimates on how the spectral gap changes when passing to the intersection. Our results also have an interesting graph theoretical consequence that does not use the language of groups. Namely, we show that an expanding covering tower of finite regular graphs is either bipartite or stays bounded away from being bipartite in the normalized edge distance.


Author(s):  
Derek Smith

This chapter discusses Slothouber–Graatsma–Conway puzzle, which asks one to assemble six 1 × 2 × 2 pieces and three 1 × 1 × 1 pieces into the shape of a 3 × 3 × 3 cube. The puzzle has been generalized to larger cubes, and there is an infinite family of such puzzles. The chapter's primary argument is that, for any odd positive integer n = 2k + 1, there is exactly one way, up to symmetry, to make an n × n × n cube out of n tiny 1 × 1 × 1 cubes and six of each of a set of rectangular blocks. The chapter describes a way to solve each puzzle in the family and explains why there are no other solutions. It then presents several related open problems.


Author(s):  
Gary Chartrand ◽  
Sergio Ruiz ◽  
Curtiss E. Wall

AbstractA near 1-factor of a graph of order 2n ≧ 4 is a subgraph isomorphic to (n − 2) K2 ∪ P3 ∪ K1. Wallis determined, for each r ≥ 3, the order of a smallest r-regular graph of even order without a 1-factor; while for each r ≧ 3, Chartrand, Goldsmith and Schuster determined the order of a smallest r-regular, (r − 2)-edge-connected graph of even order without a 1-factor. These results are extended to graphs without near 1-factors. It is known that every connected, cubic graph with less than six bridges has a near 1-factor. The order of a smallest connected, cubic graph with exactly six bridges and no near 1-factor is determined.


Sign in / Sign up

Export Citation Format

Share Document