Analytic Subalgebras of Von Neumann Algebras

1987 ◽  
Vol 39 (1) ◽  
pp. 74-99 ◽  
Author(s):  
Paul S. Muhly ◽  
Kichi-Suke Saito

Let M be a von Neumann algebra and let {αt}t∊R be a σ-weakly continuous flow on M; i.e., suppose that {αt}t∊R is a one-parameter group of *-automorphisms of M such that for each ρ in the predual, M∗, of M and for each x ∊ M, the function of t, ρ(αt(x)), is continuous on R. In recent years, considerable attention has been focused on the subspace of M, H∞(α), which is defined to bewhere H∞(R) is the classical Hardy space consisting of the boundary values of functions bounded analytic in the upper half-plane. In Theorem 3.15 of [8] it is proved that in fact H∞(α) is a σ-weakly closed subalgebra of M containing the identity operator such thatis σ-weakly dense in M, and such that

1985 ◽  
Vol 37 (3) ◽  
pp. 405-429 ◽  
Author(s):  
Baruch Solel

Let M be a σ-finite von Neumann algebra and {σt}t∊T be a σ-weakly continuous representation of the unit circle, T, as *-automorphisms of M. Let H∞(σ) be the set of all x ∊ M such thatThe structure of H∞(σ) was studied by several authors (see [2-13]).The main object of this paper is to study the σ-weakly closed subalgebras of M that contain H∞(σ). In [12] this was done for the special case where H∞(σ) is a nonselfadjoint crossed product.Let Mn, for n ∊ Z, be the set of all x ∊ M such that


Author(s):  
F. J. Yeadon

In (7) we proved maximal and pointwise ergodic theorems for transformations a of a von Neumann algebra which are linear positive and norm-reducing for both the operator norm ‖ ‖∞ and the integral norm ‖ ‖1 associated with a normal trace ρ on . Here we introduce a class of Banach spaces of unbounded operators, including the Lp spaces defined in (6), in which the transformations α reduce the norm, and in which the mean ergodic theorem holds; that is the averagesconverge in norm.


1984 ◽  
Vol 25 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Charles A. Akemann

Recent work [2, 6] on subalgebras of matrix algebras leads naturally to the following situation. Let A be a C*-subalgebra of the C*-algebra B andM be a weakly closed *-subalgebra of the von Neumann algebra N. Consider the following Conditions.Condition 1. For every b≠ 0 in B there exists a ∈ A such that O≠ab ∈ A.Condition 2. For every b∈B there exists a ≠ 0 in A such that ab ∈ A.If we replace A by M and B by N in Conditions 1 and 2 we get von Neumann algebra versions which we shall call Condition 1'and Condition 2'. Clearly Condition 1 implies Condition 2, and both conditions suggest that A is some kind of weak ideal of B. This paper explores the extent to which this is true. The paper grew out of the author's attempts [1, 3] to generalize the Stone-Weierstrass theorem to C*-algebras.


1966 ◽  
Vol 18 ◽  
pp. 1152-1160 ◽  
Author(s):  
Arlen Brown ◽  
Carl Pearcy

Let denote a separable, complex Hilbert space, and let R be a von Neumann algebra acting on . (A von Neumann algebra is a weakly closed, self-adjoint algebra of operators that contains the identity operator on its underlying space.) An element A of R is a commutator in R if there exist operators B and C in R such that A = BC — CB. The problem of specifying exactly which operators are commutators in R has been solved in certain special cases; e.g. if R is an algebra of type In (n < ∞) (2), and if R is a factor of type I∞ (1). It is the purpose of this note to treat the same problem in case R is a factor of type III. Our main result is the following theorem.


1988 ◽  
Vol 40 (1) ◽  
pp. 248-256 ◽  
Author(s):  
C. Robert Miers

By a von Neumann algebra M we mean a weakly closed, self-adjoint algebra of operators on a Hilbert space which contains I, the identity operator. A factor is a von Neumann algebra whose centre consists of scalar multiples of I.In all that follows ϕ:M → N will be a one to one, *-linear map from the von Neumann factor M onto the von Neumann algebra N such that both ϕ and ϕ−1 preserve commutativity. Our main result states that if M is not of type I2 then where is an isomorphism or an antiisomorphism, c is a non-zero scalar, and λ is a *-linear map from M into ZN, the centre of N.Our interest in this problem was aroused by several recent results. In [1], Choi, Jafarian, and Radjavi proved that if S is the real linear space of n × n matrices over any algebraically closed field, n ≧ 3, and ψ a linear operator on S which preserves commuting pairs of matrices, then either ψ(S) is commutative or there exists a unitary matrix U such thatfor all A in S. They proved an analogous result for the collection of all bounded self-adjoint operators on an infinite dimensional Hilbert space when ψ is one to one. Subsequently, Omladic [7] proved that if ψ:L(X) → L(X) is a bijective linear operator preserving commuting pairs of operators where X is a non-trivial Banach space, thenwhere U is a bounded invertible operator on X and A′ is the adjoint of A.


1977 ◽  
Vol 81 (2) ◽  
pp. 233-236 ◽  
Author(s):  
A. Guyan Robertson

We investigate here the question of uniqueness of best approximation to operators in von Neumann algebras by elements of certain linear subspaces. Recall that a linear subspace V of a Banach space X is called a Chebyshev subspace if each vector in X has a unique best approximation by vectors in V. Our first main result characterizes the one-dimensional Chebyshev subspaces of a von Neumann algebra. This may be regarded as a generalization of a result of Stampfli [(4), theorem 2, corollary] which states that the scalar multiples of the identity operator form a Chebyshev subspace. Alternatively it may be regarded as a generalization of the commutative situation in which a continuous complex-valued function f on a compact Hausdorff space X spans a Chebyshev subspace of C(X) if and only if f does not vanish on X [(3), p. 215]. Our second main result is that a finite dimensional * subalgebra, of dimension > 1, of an infinite dimensional von Neumann algebra cannot be a Chebyshev subspace. This imposes limits to further generalization of Stampfli's result.


Author(s):  
E. Christopher Lance

Let N be a von Neumann subalgebra of a von Neumann algebra M. A linear mapping π: M → N is called a retraction if it is idempotent and has norm one. By a result of Tomiyama(15) a retraction is a positive mapping and is a module homo-morphism over N. A retraction is normal if it is ultraweakly continuous, and faithful if it does not annihilate any nonzero positive element of M. Suppose that (Nn)n≥1 is an increasing sequence of von Neumann subalgebras of M whose union is weakly dense in M and that, for each n, πn: M → Nn is a faithful normal retraction. The sequence (πn) is called a martingale if, whenever m ≥ n,


2008 ◽  
Vol 19 (04) ◽  
pp. 481-501 ◽  
Author(s):  
TETSUO HARADA ◽  
HIDEKI KOSAKI

Let τ be a faithful semi-finite normal trace on a semi-finite von Neumann algebra, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality states τ(f(a* xa)) ≤ τ(a* f(x)a) for a contraction a and a self-adjoint operator x. Under certain strict convexity assumption on f(t), we will study when this inequality reduces to the equality.


1989 ◽  
Vol 31 (1) ◽  
pp. 31-47
Author(s):  
Baruch Solel

Let M be a σ-finite von Neumann algebra and α = {αt}t∈A be a representation of a compact abelian group A as *-automorphisms of M. Let Γ be the dual group of A and suppose that Γ is totally ordered with a positive semigroup Σ⊆Γ. The analytic algebra associated with α and Σ iswhere spα(a) is Arveson's spectrum. These algebras were studied (also for A not necessarily compact) by several authors starting with Loebl and Muhly [10].


2006 ◽  
Vol 58 (4) ◽  
pp. 768-795 ◽  
Author(s):  
Zhiguo Hu ◽  
Matthias Neufang

AbstractThe decomposability number of a von Neumann algebra ℳ (denoted by dec(ℳ)) is the greatest cardinality of a family of pairwise orthogonal non-zero projections in ℳ. In this paper, we explore the close connection between dec(ℳ) and the cardinal level of the Mazur property for the predual ℳ* of ℳ, the study of which was initiated by the second author. Here, our main focus is on those von Neumann algebras whose preduals constitute such important Banach algebras on a locally compact group G as the group algebra L1(G), the Fourier algebra A(G), the measure algebra M(G), the algebra LUC(G)*, etc. We show that for any of these von Neumann algebras, say ℳ, the cardinal number dec(ℳ) and a certain cardinal level of the Mazur property of ℳ* are completely encoded in the underlying group structure. In fact, they can be expressed precisely by two dual cardinal invariants of G: the compact covering number κ(G) of G and the least cardinality ᙭(G) of an open basis at the identity of G. We also present an application of the Mazur property of higher level to the topological centre problem for the Banach algebra A(G)**.


Sign in / Sign up

Export Citation Format

Share Document