Commutativity Preserving Maps of Factors

1988 ◽  
Vol 40 (1) ◽  
pp. 248-256 ◽  
Author(s):  
C. Robert Miers

By a von Neumann algebra M we mean a weakly closed, self-adjoint algebra of operators on a Hilbert space which contains I, the identity operator. A factor is a von Neumann algebra whose centre consists of scalar multiples of I.In all that follows ϕ:M → N will be a one to one, *-linear map from the von Neumann factor M onto the von Neumann algebra N such that both ϕ and ϕ−1 preserve commutativity. Our main result states that if M is not of type I2 then where is an isomorphism or an antiisomorphism, c is a non-zero scalar, and λ is a *-linear map from M into ZN, the centre of N.Our interest in this problem was aroused by several recent results. In [1], Choi, Jafarian, and Radjavi proved that if S is the real linear space of n × n matrices over any algebraically closed field, n ≧ 3, and ψ a linear operator on S which preserves commuting pairs of matrices, then either ψ(S) is commutative or there exists a unitary matrix U such thatfor all A in S. They proved an analogous result for the collection of all bounded self-adjoint operators on an infinite dimensional Hilbert space when ψ is one to one. Subsequently, Omladic [7] proved that if ψ:L(X) → L(X) is a bijective linear operator preserving commuting pairs of operators where X is a non-trivial Banach space, thenwhere U is a bounded invertible operator on X and A′ is the adjoint of A.

1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


1966 ◽  
Vol 18 ◽  
pp. 1152-1160 ◽  
Author(s):  
Arlen Brown ◽  
Carl Pearcy

Let denote a separable, complex Hilbert space, and let R be a von Neumann algebra acting on . (A von Neumann algebra is a weakly closed, self-adjoint algebra of operators that contains the identity operator on its underlying space.) An element A of R is a commutator in R if there exist operators B and C in R such that A = BC — CB. The problem of specifying exactly which operators are commutators in R has been solved in certain special cases; e.g. if R is an algebra of type In (n < ∞) (2), and if R is a factor of type I∞ (1). It is the purpose of this note to treat the same problem in case R is a factor of type III. Our main result is the following theorem.


1953 ◽  
Vol 49 (2) ◽  
pp. 201-212 ◽  
Author(s):  
J. P. O. Silberstein ◽  
F. Smithies

1·1. In this paper we shall be concerned with the equationswhere K is a compact (completely continuous) linear operator in a Hilbert space , K is the adjoint of K, I is the identity operator, x and y are elements of ∥ x ∥ denotes the norm of x, and κ and σ are complex numbers.


1987 ◽  
Vol 39 (1) ◽  
pp. 74-99 ◽  
Author(s):  
Paul S. Muhly ◽  
Kichi-Suke Saito

Let M be a von Neumann algebra and let {αt}t∊R be a σ-weakly continuous flow on M; i.e., suppose that {αt}t∊R is a one-parameter group of *-automorphisms of M such that for each ρ in the predual, M∗, of M and for each x ∊ M, the function of t, ρ(αt(x)), is continuous on R. In recent years, considerable attention has been focused on the subspace of M, H∞(α), which is defined to bewhere H∞(R) is the classical Hardy space consisting of the boundary values of functions bounded analytic in the upper half-plane. In Theorem 3.15 of [8] it is proved that in fact H∞(α) is a σ-weakly closed subalgebra of M containing the identity operator such thatis σ-weakly dense in M, and such that


1989 ◽  
Vol 31 (1) ◽  
pp. 31-47
Author(s):  
Baruch Solel

Let M be a σ-finite von Neumann algebra and α = {αt}t∈A be a representation of a compact abelian group A as *-automorphisms of M. Let Γ be the dual group of A and suppose that Γ is totally ordered with a positive semigroup Σ⊆Γ. The analytic algebra associated with α and Σ iswhere spα(a) is Arveson's spectrum. These algebras were studied (also for A not necessarily compact) by several authors starting with Loebl and Muhly [10].


2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


1982 ◽  
Vol 34 (6) ◽  
pp. 1245-1250 ◽  
Author(s):  
A. van Daele

Let M be a von Neumann algebra acting on a Hilbert space and assume that M has a separating and cyclic vector ω in . Then it can happen that M contains a proper von Neumann subalgebra N for which ω is still cyclic. Such an example was given by Kadison in [4]. He considered and acting on where is a separable Hilbert space. In fact by a result of Dixmier and Maréchal, M, M′ and N have a joint cyclic vector [3]. Also Bratteli and Haagerup constructed such an example ([2], example 4.2) to illustrate the necessity of one of the conditions in the main result of their paper. In fact this situation seems to occur rather often in quantum field theory (see [1] Section 24.2, [3] and [4]).


1966 ◽  
Vol 18 ◽  
pp. 897-900 ◽  
Author(s):  
Peter A. Fillmore

In (2) Halmos and Kakutani proved that any unitary operator on an infinite-dimensional Hilbert space is a product of at most four symmetries (self-adjoint unitaries). It is the purpose of this paper to show that if the unitary is an element of a properly infinite von Neumann algebraA(i.e., one with no finite non-zero central projections), then the symmetries may be chosen fromA.A principal tool used in establishing this result is Theorem 1, which was proved by Murray and von Neumann (6, 3.2.3) for type II1factors; see also (3, Lemma 5). The author would like to thank David Topping for raising the question, and for several stimulating conversations on the subject. He is also indebted to the referee for several helpful suggestions.


1985 ◽  
Vol 37 (4) ◽  
pp. 635-643 ◽  
Author(s):  
A. K. Holzherr

Let G be a locally compact group and ω a normalized multiplier on G. Denote by V(G) (respectively by V(G, ω)) the von Neumann algebra generated by the regular representation (respectively co-regular representation) of G. Kaniuth [6] and Taylor [14] have characterized those G for which the maximal type I finite central projection in V(G) is non-zero (respectively the identity operator in V(G)).In this paper we determine necessary and sufficient conditions on G and ω such that the maximal type / finite central projection in V(G, ω) is non-zero (respectively the identity operator in V(G, ω)) and construct this projection explicitly as a convolution operator on L2(G). As a consequence we prove the following statements are equivalent,(i) V(G, ω) is type I finite,(ii) all irreducible multiplier representations of G are finite dimensional,(iii) Gω (the central extension of G) is a Moore group, that is all its irreducible (ordinary) representations are finite dimensional.


1976 ◽  
Vol 17 (2) ◽  
pp. 158-160
Author(s):  
Guyan Robertson

In what follows, B(H) will denote the C*-algebra of all bounded linear operators on a Hilbert space H. Suppose we are given a C*-subalgebra A of B(H), which we shall suppose contains the identity operator 1. We are concerned with the existence of states f of B(H) which satisfy the following trace-like relation relative to A:Our first result shows the existence of states f satisfying (*), when A is the C*-algebra C*(x) generated by a normaloid operator × and the identity. This allows us to give simple proofs of some well-known results in operator theory. Recall that an operator × is normaloid if its operator norm equals its spectral radius.


Sign in / Sign up

Export Citation Format

Share Document