Eigenvalues of the Curvature Operator for Certain Homogeneous Manifolds

1990 ◽  
Vol 42 (6) ◽  
pp. 981-999
Author(s):  
J. E. D'Atri ◽  
I. Dotti Miatello

Given a Riemannian manifold M, the Riemann tensor R induces the curvature operator on the exterior power of the tangent space, defined by the formula where the inner product is defined by From the symmetries of R, it follows that ρ is self-adjoint and so has only real eigenvalues. R also induces the sectional curvature function K on 2-planes in is an orthonormal basis of the 2-plane π.

1987 ◽  
Vol 29 (2) ◽  
pp. 245-248 ◽  
Author(s):  
Fuad Kittaneh

Let H denote a separable, infinite dimensional Hilbert space. Let B(H), C2 and C1 denote the algebra of all bounded linear operators acting on H, the Hilbert–Schmidt class and the trace class in B(H) respectively. It is well known that C2 and C1 each form a two-sided-ideal in B(H) and C2 is itself a Hilbert space with the inner productwhere {ei} is any orthonormal basis of H and tr(.) is the natural trace on C1. The Hilbert–Schmidt norm of X ∈ C2 is given by ⅡXⅡ2=(X, X)½.


1994 ◽  
Vol 36 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Bang-Yen Chen

Let V and W be two vector spaces over the field of real numbers R. Then we have the notion of the tensor product V ⊗ W. If V and W are inner product spaces with their inner products given respectively by «,»v and «,» w, then V ⊗ W is also an inner product space with inner product denned byLet Em denote the m-dimensional Euclidean space with the canonical Euclidean inner product. Then, with respect to the inner product defined above, Em ⊗Em is isometric to Em. By applying this algebraic notion, we have the notion of tensor product mapf ⊗h: M→ E: M ⊗= Em; associated with any two maps f: M→Em and h:M→E of a given Riemannian manifold (M, g) defined as follows:Denote by R(M) the set of all transversal immersions from an n-dimensional Riemannian manifold (M, g) into Euclidean spaces; i. e., immersions f:M→Em with f(p) ∉T*(TPM) for p ∈ M. Then ⊗ is a binary operation on R(M). Hence, if f: Mm and h: M→Em are immersions belonging to R(M), then their tensor product map f ⊗ h: M→ Em ⊗ Em ≡ Emm is an immersion in R(M), called the tensor product immersionof f and h.


1975 ◽  
Vol 27 (3) ◽  
pp. 610-617 ◽  
Author(s):  
Leo B. Jonker

Let M be a. complete connected Riemannian manifold of dimension n and let £:M → Rn+k be an isometric immersion into the Euclidean space Rn+k. Let ∇ be the connection on Mn and let be the Euclidean connection on Rn+k. Also letdenote the second fundamental form B(X, Y) = (xY)→. Here TP(M) denotes the tangent space at p, NP(M) the normal space and (…)→ the normal component.


1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


2013 ◽  
Vol 143 (6) ◽  
pp. 1255-1289 ◽  
Author(s):  
Andrii Khrabustovskyi

The paper deals with the asymptotic behaviour as ε → 0 of the spectrum of the Laplace–Beltrami operator Δε on the Riemannian manifold Mε (dim Mε = N ≥ 2) depending on a small parameter ε > 0. Mε consists of two perforated domains, which are connected by an array of tubes of length qε. Each perforated domain is obtained by removing from the fixed domain Ω ⊂ ℝN the system of ε-periodically distributed balls of radius dε = ō(ε). We obtain a variety of homogenized spectral problems in Ω; their type depends on some relations between ε, dε and qε. In particular, if the limitsare positive, then the homogenized spectral problem contains the spectral parameter in a nonlinear manner, and its spectrum has a sequence of accumulation points.


2018 ◽  
Vol 97 (3) ◽  
pp. 459-470 ◽  
Author(s):  
IZ-IDDINE EL-FASSI ◽  
JANUSZ BRZDĘK

Motivated by the notion of Ulam stability, we investigate some inequalities connected with the functional equation $$\begin{eqnarray}f(xy)+f(x\unicode[STIX]{x1D70E}(y))=2f(x)+h(y),\quad x,y\in G,\end{eqnarray}$$ for functions $f$ and $h$ mapping a semigroup $(G,\cdot )$ into a commutative semigroup $(E,+)$, where the map $\unicode[STIX]{x1D70E}:G\rightarrow G$ is an endomorphism of $G$ with $\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D70E}(x))=x$ for all $x\in G$. We derive from these results some characterisations of inner product spaces. We also obtain a description of solutions to the equation and hyperstability results for the $\unicode[STIX]{x1D70E}$-quadratic and $\unicode[STIX]{x1D70E}$-Drygas equations.


1972 ◽  
Vol 24 (5) ◽  
pp. 799-804 ◽  
Author(s):  
R. L. Bishop ◽  
S.I. Goldberg

Let (M, g) be a C∞ Riemannian manifold and A be the field of symmetric endomorphisms corresponding to the Ricci tensor S; that is,We consider a condition weaker than the requirement that A be parallel (▽ A = 0), namely, that the “second exterior covariant derivative” vanish ( ▽x▽YA — ▽Y ▽XA — ▽[X,Y]A = 0), which by the classical interchange formula reduces to the propertywhere R(X, Y) is the curvature transformation determined by the vector fields X and Y.The property (P) is equivalent toTo see this we observe first that a skew symmetric and a symmetric endomorphism commute if and only if their product is skew symmetric.


1953 ◽  
Vol 5 ◽  
pp. 524-535 ◽  
Author(s):  
G. F. D. Duff

The theory of the systems of partial differential equations which arise in connection with the invariant differential operators on a Riemannian manifold may be developed by methods based on those of potential theory. It is therefore natural to consider in the same context the theory of elliptic differential equations, in particular those which are self-adjoint. Some results for a tensor equation in which appears, in addition to the operator Δ of tensor theory, a matrix or double tensor field defined on the manifold, are here presented. The equation may be writtenin a notation explained below.


1987 ◽  
Vol 30 (2) ◽  
pp. 289-293 ◽  
Author(s):  
Frances Kirwan

Let X be a compact Riemannian manifold. If f:X→ℝ is a nondegenerate Morse function in the sense of Bott [2] then one has Morse inequalities which can be expressed in the formwhere Pt(X) is the Poincaré polynomial Σtidim Hi(X;ℚ of X ann {Cβ|β ∈B} are the connected components of the set of critical points for f For any polynomial Q(t)∈ℤ[t] we write Q(t)≧0 if all the coefficients of Q are nonnegative.


2013 ◽  
Vol 55 (1) ◽  
pp. 39-54
Author(s):  
LUIS ALEJANDRO MOLANO MOLANO

AbstractWe study the sequence of monic polynomials orthogonal with respect to inner product $$\begin{eqnarray*}\langle p, q\rangle = \int \nolimits \nolimits_{0}^{\infty } p(x)q(x){e}^{- x} {x}^{\alpha } \hspace{0.167em} dx+ Mp(\zeta )q(\zeta )+ N{p}^{\prime } (\zeta ){q}^{\prime } (\zeta ),\end{eqnarray*}$$ where $\alpha \gt - 1$, $M\geq 0$, $N\geq 0$, $\zeta \lt 0$, and $p$ and $q$ are polynomials with real coefficients. We deduce some interlacing properties of their zeros and, by using standard methods, we find a second-order linear differential equation satisfied by the polynomials and discuss an electrostatic model of their zeros.


Sign in / Sign up

Export Citation Format

Share Document