Linéarisation symplectique en dimension 2

2001 ◽  
Vol 44 (2) ◽  
pp. 129-139
Author(s):  
Carlos Currás-Bosch

AbstractIn this paper the germ of neighborhood of a compact leaf in a Lagrangian foliation is symplectically classified when the compact leaf is , the affine structure induced by the Lagrangian foliation on the leaf is complete, and the holonomy of in the foliation linearizes. The germ of neighborhood is classified by a function, depending on one transverse coordinate, this function is related to the affine structure of the nearly compact leaves.

2004 ◽  
Vol 11 (04) ◽  
pp. 359-375 ◽  
Author(s):  
R. F. Streater

Let H0 be a selfadjoint operator such that Tr e−βH0 is of trace class for some β < 1, and let χɛ denote the set of ɛ-bounded forms, i.e., ∥(H0+C)−1/2−ɛX(H0+C)−1/2+ɛ∥ < C for some C > 0. Let χ := Span ∪ɛ∈(0,1/2]χɛ. Let [Formula: see text] denote the underlying set of the quantum information manifold of states of the form ρx = e−H0−X−ψx, X ∈ χ. We show that if Tr e−H0 = 1. 1. the map Φ, [Formula: see text] is a quantum Young function defined on χ 2. The Orlicz space defined by Φ is the tangent space of [Formula: see text] at ρ0; its affine structure is defined by the (+1)-connection of Amari 3. The subset of a ‘hood of ρ0, consisting of p-nearby states (those [Formula: see text] obeying C−1ρ1+p ≤ σ ≤ Cρ1 − p for some C > 1) admits a flat affine connection known as the (−1) connection, and the span of this set is part of the cotangent space of [Formula: see text] 4. These dual structures extend to the completions in the Luxemburg norms.


Author(s):  
JOUNI PARKKONEN ◽  
FRÉDÉRIC PAULIN

Abstract We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.


2021 ◽  
pp. 1-54
Author(s):  
MANUEL L. REYES ◽  
DANIEL ROGALSKI

Abstract This is a general study of twisted Calabi–Yau algebras that are $\mathbb {N}$ -graded and locally finite-dimensional, with the following major results. We prove that a locally finite graded algebra is twisted Calabi–Yau if and only if it is separable modulo its graded radical and satisfies one of several suitable generalizations of the Artin–Schelter regularity property, adapted from the work of Martinez-Villa as well as Minamoto and Mori. We characterize twisted Calabi–Yau algebras of dimension 0 as separable k-algebras, and we similarly characterize graded twisted Calabi–Yau algebras of dimension 1 as tensor algebras of certain invertible bimodules over separable algebras. Finally, we prove that a graded twisted Calabi–Yau algebra of dimension 2 is noetherian if and only if it has finite GK dimension.


2018 ◽  
Vol 10 (3) ◽  
pp. 99-134 ◽  
Author(s):  
Mariana Batista

Who gets what in portfolio allocation, and how does it matter to coalition partners’ legislative support in presidential systems? I propose that portfolios are not all alike, and that their allocation as well as the support for the president's agenda depends on the particular distribution of assets within the executive. The portfolio share allocated to coalition parties is weighted by a measure of importance based on the assets controlled by the ministry in question, such as policies, offices, and budgets. Once the weighted allocation of ministries has been identified, the results show that: 1) the president concentrates the most important ministries in their own party, mainly considering the policy dimension; 2) the positive relationship between portfolio allocation and legislative support remains, with the importance of specific dimensions being considered; and, 3) coalition partners do not respond differently in terms of legislative support in light of the different assets’ distribution within the portfolio allocation.


1998 ◽  
Vol 16 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Tsion Avital ◽  
Gerald C. Cupchik

A series of four experiments were conducted to examine viewer perceptions of three sets of five nonrepresentational paintings. Increased complexity was embedded in the hierarchical structure of each set by carefully selecting colors and ordering them in each successive painting according to certain rules of transformation which created hierarchies. Experiment 1 supported the hypothesis that subjects would discern the hierarchical complexity underlying the sets of paintings. In Experiment 2 viewers rated the paintings on collative (complexity, disorder) and affective (pleasing, interesting, tension, and power) scales, and a factor analysis revealed that affective ratings were tied to complexity (Factor 1) but not to disorder (Factor 2). In Experiment 3, a measure of exploratory activity (free looking time) was correlated with complexity (Factor 1) but not with disorder (Factor 2). Multidimensional scaling was used in Experiment 4 to examine perceptions of the paintings seen in pairs. Dimension 1 contrasted Soft with Hard-Edged paintings, while Dimension 2 reflected the relative separation of figure from ground in these paintings. Together these results show that untrained viewers can discern hierarchical complexity in paintings and that this quality stimulates affective responses and exploratory activity.


1959 ◽  
Vol 15 ◽  
pp. 219-223
Author(s):  
Minoru Kurita

In this paper we investigate indices of umbilics of a closed surface in the euclidean space. Most part of the discussion is concerned with a symmetric tensor field of degree 2, or rather a direction field, on a Riemannian manifold of dimension 2.


2006 ◽  
Vol 45 (3) ◽  
pp. 1039-1073 ◽  
Author(s):  
Xi Wu ◽  
Stephen S.‐T. Yau
Keyword(s):  

1989 ◽  
Vol 04 (19) ◽  
pp. 5047-5117 ◽  
Author(s):  
LAURENT NOTTALE

We review in this paper the first results obtained in an attempt at understanding quantum space-time based on a new extension of the principle of relativity and on the geometrical concept of fractals. We present methods for dealing with the nondifferentiability and the infinities of fractals, as a first step towards the definition and intrinsic description of a fractal space. After having recalled that the Heisenberg relations imply a transition of spatial coordinates of a particle to fractal dimension 2 about the de Broglie length λ = ħ/p, it is suggested that a similar transition occurs for temporal coordinates about the de Broglie time τ = ħ/E. We then investigate the hypothesis that the microstructure of space-time is of fractal nature, and that the observed properties of the quantum world at a given resolution result from the smoothing of curvilinear coordinates of such a spacetime projected into classical spacetime. Along this road, we successively study the link of fractal dimension 2 to spin, we give first hints on the expected behavior of families of fractal geodesics, and we exhibit a general class of fractal structures which is assumed to yield a lowest order description of the quantum vacuum. The links between the new approach and both special and general relativity are touched upon. We finally suggest that the anomalous peaks recently observed in the spectra of positrons from supercritical heavy ion collisions may be understood in this context.


Sign in / Sign up

Export Citation Format

Share Document