On the Canonical Solution of the Sturm–Liouville Problem with Singularity and Turning Point of Even Order

2011 ◽  
Vol 54 (3) ◽  
pp. 506-518 ◽  
Author(s):  
A. Neamaty ◽  
S. Mosazadeh

AbstractIn this paper, we are going to investigate the canonical property of solutions of systems of differential equations having a singularity and turning point of even order. First, by a replacement, we transform the system to the Sturm–Liouville equation with turning point. Using of the asymptotic estimates provided by Eberhard, Freiling, and Schneider for a special fundamental system of solutions of the Sturm–Liouville equation, we study the infinite product representation of solutions of the systems. Then we transform the Sturm–Liouville equation with turning point to the equation with singularity, then we study the asymptotic behavior of its solutions. Such representations are relevant to the inverse spectral problem.

2012 ◽  
Vol 17 (5) ◽  
pp. 618-629
Author(s):  
Hamidreza Marasi ◽  
Aliasghar Jodayree Akbarfam

In this paper the differential equation y″ + (ρ 2 φ 2 (x) –q(x))y = 0 is considered on a finite interval I, say I = [0, 1], where q is a positive sufficiently smooth function and ρ 2 is a real parameter. Also, [0, 1] contains a finite number of zeros of φ 2 , the so called turning points, 0 < x 1 < x 2 < … < x m < 1. First we obtain the infinite product representation of the solution. The product representation, satisfies in the original equation. As a result the associated dual equation is derived and then we proceed with the solution of the inverse problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sertac Goktas

In mathematical physics (such as the one-dimensional time-independent Schrödinger equation), Sturm-Liouville problems occur very frequently. We construct, with a different perspective, a Sturm-Liouville problem in multiplicative calculus by some algebraic structures. Then, some asymptotic estimates for eigenfunctions of the multiplicative Sturm-Liouville problem are obtained by some techniques. Finally, some basic spectral properties of this multiplicative problem are examined in detail.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zohreh Zeinalabedini Charandabi ◽  
Hakimeh Mohammadi ◽  
Shahram Rezapour ◽  
Hashem Parvaneh Masiha

AbstractThe Sturm–Liouville differential equation is one of interesting problems which has been studied by researchers during recent decades. We study the existence of a solution for partial fractional Sturm–Liouville equation by using the α-ψ-contractive mappings. Also, we give an illustrative example. By using the α-ψ-multifunctions, we prove the existence of solutions for inclusion version of the partial fractional Sturm–Liouville problem. Finally by providing another example and some figures, we try to illustrate the related inclusion result.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 544 ◽  
Author(s):  
Upeksha Perera ◽  
Christine Böckmann

In this paper Lie group method in combination with Magnus expansion is utilized to develop a universal method applicable to solving a Sturm–Liouville problem (SLP) of any order with arbitrary boundary conditions. It is shown that the method has ability to solve direct regular (and some singular) SLPs of even orders (tested for up to eight), with a mix of (including non-separable and finite singular endpoints) boundary conditions, accurately and efficiently. The present technique is successfully applied to overcome the difficulties in finding suitable sets of eigenvalues so that the inverse SLP problem can be effectively solved. The inverse SLP algorithm proposed by Barcilon (1974) is utilized in combination with the Magnus method so that a direct SLP of any (even) order and an inverse SLP of order two can be solved effectively.


1994 ◽  
Vol 37 (1) ◽  
pp. 57-72 ◽  
Author(s):  
P. A. Binding ◽  
P. J. Browne ◽  
K. Seddighi

Sturm theory is extended to the equationfor 1/p, q, r∈L1 [0, 1] with p, r > 0, subject to boundary conditionsandOscillation and comparison results are given, and asymptotic estimates are developed. Interlacing of eigenvalues with those of a standard Sturm–Liouville problem where the boundary conditions are ajy(j) = cj(py′)(j), j=0, 1, forms a key tool.


2018 ◽  
Vol 22 (Suppl. 1) ◽  
pp. 79-85 ◽  
Author(s):  
Erdal Bas ◽  
Turk Metin

In this study, the zeros of eigen functions of spectral theory are considered in fractional Sturm-Liouville problem. The 1st and 2nd comparison theorems for fractional Sturm-Liouville equation with boundary condition and their proofs are given. In this way, our new approximation will contribute to construct fractional Sturm-Liouville theory. Also, its an application is given in case of Coulomb potential and the results are presented by a symbolic graph.


Author(s):  
S. M. Riehl

For a special case of the Sturm-Liouville equation, −(py′)′ + qy = λwy on [0, ∞) with the initial condition y(0) cos α + p(0)y′(0) sin α = 0, α ∈ [0, π), it is shown that, given the spectral derivative for two values of α ∈ [0, π) at a fixed μ = Re{λ} ≥ Λ0, it is possible to uniquely determine . An explicit formula is derived to accomplish this. Further, in a more general case of the Sturm-Liouville problem for μ with both finite and positive, then the following inequality holds


Sign in / Sign up

Export Citation Format

Share Document