scholarly journals Reduction to Dimension Two of the Local Spectrum for an AH Algebra with the Ideal Property

2017 ◽  
Vol 60 (4) ◽  
pp. 791-806 ◽  
Author(s):  
Chunlan Jiang

AbstractA C*-algebra Ahas the ideal property if any ideal I of Ais generated as a closed two-sided ideal by the projections inside the ideal. Suppose that the limit C*-algebra A of inductive limit of direct sums of matrix algebras over spaces with uniformly bounded dimension has the ideal property. In this paper we will prove that A can be written as an inductive limit of certain very special subhomogeneous algebras, namely, direct sum of dimension-drop interval algebras and matrix algebras over 2-dimensional spaces with torsion H2 groups.

2019 ◽  
pp. 1-26
Author(s):  
Bo Cui ◽  
Chunlan Jiang ◽  
Liangqing Li

An ATAI (or ATAF, respectively) algebra, introduced in [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404] (or in [X. C. Fang, The classification of certain non-simple C*-algebras of tracial rank zero, J. Funct. Anal. 256 (2009) 3861–3891], respectively) is an inductive limit [Formula: see text], where each [Formula: see text] is a simple separable nuclear TAI (or TAF) C*-algebra with UCT property. In [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404], the second author classified all ATAI algebras by an invariant consisting orderd total [Formula: see text]-theory and tracial state spaces of cut down algebras under an extra restriction that all element in [Formula: see text] are torsion. In this paper, we remove this restriction, and obtained the classification for all ATAI algebras with the Hausdorffized algebraic [Formula: see text]-group as an addition to the invariant used in [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404]. The theorem is proved by reducing the class to the classification theorem of [Formula: see text] algebras with ideal property which is done in [G. Gong, C. Jiang and L. Li, A classification of inductive limit C*-algebras with ideal property, preprint (2016), arXiv:1607.07681]. Our theorem generalizes the main theorem of [X. C. Fang, The classification of certain non-simple C*-algebras of tracial rank zero, J. Funct. Anal. 256 (2009) 3861–3891], [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404] (see Corollary 4.3).


2006 ◽  
Vol 80 (3) ◽  
pp. 317-333
Author(s):  
C. J. Read

AbstractIn this paper we begin with a short, direct proof that the Banach algebra B(l1) is not amenable. We continue by showing that various direct sums of matrix algebras are not amenable either, for example the direct sum of the finite dimensional algebras is no amenable for 1 ≤ p ≤ ∞, p ≠ 2. Our method of proof naturally involves free group algebras, (by which we mean certain subalgebras of B(X) for some space X with symmetric basis—not necessarily X = l2) and we introduce the notion of ‘relative amenability’ of these algebras.


2011 ◽  
Vol 63 (2) ◽  
pp. 381-412 ◽  
Author(s):  
Kui Ji ◽  
Chunlan Jiang

Abstract Let A be an AI algebra; that is, A is the C*-algebra inductive limit of a sequencewhere are [0, 1], kn, and [n, i] are positive integers. Suppose that A has the ideal property: each closed two-sided ideal of A is generated by the projections inside the ideal, as a closed two-sided ideal. In this article, we give a complete classification of AI algebras with the ideal property.


1969 ◽  
Vol 21 ◽  
pp. 301-309 ◽  
Author(s):  
Gerhard Michler

All rings considered in this note have an identity element, and all R-modules are unitary.Bass (2) defined a left perfect ring as a ring R satisfying the minimum condition on principal right ideals. A commutative ring R is perfect if and only if R is a direct sum of finitely many local rings whose radicals are T-nilpotent. Therefore, the commutative perfect rings with finite global projective dimension are just the direct sums of finitely many commutative fields, and hence they trivially satisfy the minimum condition for all ideals. However, in the non-commutative case, even hereditary perfect rings are not necessarily right or left artinian (cf. Example 3.4).Each left perfect ring R has only finitely many idempotent (two-sided) ideals (Corollary 2.3), where the ideal X of R is called idempotent, if X = X2. Hence, it makes sense to consider minimal idempotent idealsof the left perfect ring R, i.e., ideals of R which are minimal in the set of all idemponent ideals of R.


2013 ◽  
Vol 63 (4) ◽  
Author(s):  
Beata Rothkegel

AbstractIn the paper we formulate a criterion for the nonsingularity of a bilinear form on a direct sum of finitely many invertible ideals of a domain. We classify these forms up to isometry and, in the case of a Dedekind domain, up to similarity.


1989 ◽  
Vol 12 (3) ◽  
pp. 429-434
Author(s):  
V. Murali

In this note we define and discuss some properties of partition of unity on *-inductive limits of topological vector spaces. We prove that if a partition of unity exists on a *-inductive limit space of a collection of topological vector spaces, then it is isomorphic and homeomorphic to a subspace of a *-direct sum of topological vector spaces.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Brendan Goldsmith ◽  
Ketao Gong

AbstractNecessary and sufficient conditions to ensure that the direct sum of two Abelian groups with zero entropy is again of zero entropy are still unknown; interestingly the same problem is also unresolved for direct sums of Hopfian and co-Hopfian groups.We obtain sufficient conditions in some situations by placing restrictions on the homomorphisms between the groups. There are clear similarities between the various cases but there is not a simple duality involved.


1994 ◽  
Vol 17 (4) ◽  
pp. 661-666
Author(s):  
Mahmoud Ahmed Kamal

In this paper we show that a direct decomposition of modulesM⊕N, withNhomologically independent to the injective hull ofM, is a CS-module if and only ifNis injective relative toMand both ofMandNare CS-modules. As an application, we prove that a direct sum of a non-singular semisimple module and a quasi-continuous module with zero socle is quasi-continuous. This result is known for quasi-injective modules. But when we confine ourselves to CS-modules we need no conditions on their socles. Then we investigate direct sums of CS-modules which are pairwise relatively inective. We show that every finite direct sum of such modules is a CS-module. This result is known for quasi-continuous modules. For the case of infinite direct sums, one has to add an extra condition. Finally, we briefly discuss modules in which every two direct summands are relatively inective.


2006 ◽  
Vol 49 (2) ◽  
pp. 213-225
Author(s):  
Andrew J. Dean

AbstractAn invariant is presented which classifies, up to equivariant isomorphism, C*-dynamical systems arising as limits from inductive systems of elementary C*-algebras on which the Euclidean motion group acts by way of unitary representations that decompose into finite direct sums of irreducibles.


1960 ◽  
Vol 12 ◽  
pp. 107-125 ◽  
Author(s):  
D. G. Higman

We study representations of o-orders, that is, of o-regular -algebras, in the case that o is a Dedekind domain. Our main concern is with those -modules, called -representation modules, which are regular as o-modules. For any -module M we denote by D(M) the ideal consisting of the elements x ∈ o such that x.Ext1(M, N) = 0 for all -modules N, where Ext = Ext(,0) is the relative functor of Hochschild (5). To compute D(M) we need the small amount of homological algebra presented in § 1. In § 2 we show that the -representation modules with rational hulls isomorphic to direct sums of right ideal components of the rational hull A of , called principal-modules, are characterized by the property that D(M) ≠ 0. The (, o)-projective -modules are those with D(M) = 0. We observe that D(M) divides the ideal I() of (2) for every M , and give another proof of the fact that I() ≠ 0 if and only if A is separable. Up to this point, o can be taken to be an arbitrary integral domain.


Sign in / Sign up

Export Citation Format

Share Document