scholarly journals Spectral Flow Argument Localizing an Odd Index Pairing

2019 ◽  
Vol 62 (02) ◽  
pp. 373-381 ◽  
Author(s):  
Terry A. Loring ◽  
Hermann Schulz-Baldes

AbstractAn odd Fredholm module for a given invertible operator on a Hilbert space is specified by an unbounded so-called Dirac operator with compact resolvent and bounded commutator with the given invertible. Associated with this is an index pairing in terms of a Fredholm operator with Noether index. Here it is shown by a spectral flow argument how this index can be calculated as the signature of a finite dimensional matrix called the spectral localizer.

2018 ◽  
Vol 122 (1) ◽  
pp. 151 ◽  
Author(s):  
Sara Malacarne

Given a finite-dimensional Hilbert space $H$ and a collection of operators between its tensor powers satisfying certain properties, we give a short proof of the existence of a compact quantum group $G$ with a fundamental representation $U$ on $H$ such that the intertwiners between the tensor powers of $U$ coincide with the given collection of operators. We then explain how the general version of Woronowicz Tannaka-Krein duality can be deduced from this.


Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


Author(s):  
Paweł Wójcik

AbstractWe observe that every map between finite-dimensional normed spaces of the same dimension that respects fixed semi-inner products must be automatically a linear isometry. Moreover, we construct a uniformly smooth renorming of the Hilbert space $$\ell _2$$ ℓ 2 and a continuous injection acting thereon that respects the semi-inner products, yet it is non-linear. This demonstrates that there is no immediate extension of the former result to infinite dimensions, even under an extra assumption of uniform smoothness.


1965 ◽  
Vol 17 ◽  
pp. 1030-1040 ◽  
Author(s):  
Earl A. Coddington

The domain and null space of an operator A in a Hilbert space will be denoted by and , respectively. A formally normal operatorN in is a densely defined closed (linear) operator such that , and for all A normal operator in is a formally normal operator N satisfying 35 . A study of the possibility of extending a formally normal operator N to a normal operator in the given , or in a larger Hilbert space, was made in (1).


Author(s):  
Moulay-Tahar Benameur ◽  
Alan L. Carey

AbstractFor a single Dirac operator on a closed manifold the cocycle introduced by Jaffe-Lesniewski-Osterwalder [19] (abbreviated here to JLO), is a representative of Connes' Chern character map from the K-theory of the algebra of smooth functions on the manifold to its entire cyclic cohomology. Given a smooth fibration of closed manifolds and a family of generalized Dirac operators along the fibers, we define in this paper an associated bivariant JLO cocycle. We then prove that, for any l ≥ 0, our bivariant JLO cocycle is entire when we endow smoooth functions on the total manifold with the Cl+1 topology and functions on the base manifold with the Cl topology. As a by-product of our theorem, we deduce that the bivariant JLO cocycle is entire for the Fréchet smooth topologies. We then prove that our JLO bivariant cocycle computes the Chern character of the Dai-Zhang higher spectral flow.


Author(s):  
Davide di Giorgio ◽  
Alessandra Lunardi

We consider a path of sectorial operators t ↦ A (t) ∈ Cα (R, L (D, X)), 0 < α < 1, in general Banach space X, with common domain D (A (t)) = D and with hyperbolic limits at ±∞. We prove that there exist exponential dichotomies in the half-lines (−∞, −T] and [T, +∞) for large T, and we study the operator (Lu)(t) = u′(t) − A(t)u(t) in the space Cα (R, D) ∩ C1+α (R, X). In particular, we give sufficient conditions in order that L is a Fredholm operator. In this case, the index of L is given by an explicit formula, which coincides to the well-known spectral flow formula in finite dimension. Such sufficient conditions are satisfied, for instance, if the embedding D ↪ X is compact.


2009 ◽  
Vol 20 (01) ◽  
pp. 45-76
Author(s):  
MAGNUS B. LANDSTAD ◽  
NADIA S. LARSEN

For a Hecke pair (G, H) and a finite-dimensional representation σ of H on Vσ with finite range, we consider a generalized Hecke algebra [Formula: see text], which we study by embedding the given Hecke pair in a Schlichting completion (Gσ, Hσ) that comes equipped with a continuous extension σ of Hσ. There is a (non-full) projection [Formula: see text] such that [Formula: see text] is isomorphic to [Formula: see text]. We study the structure and properties of C*-completions of the generalized Hecke algebra arising from this corner realisation, and via Morita–Fell–Rieffel equivalence, we identify, in some cases explicitly, the resulting proper ideals of [Formula: see text]. By letting σ vary, we can compare these ideals. The main focus is on the case with dim σ = 1 and applications include ax + b-groups and the Heisenberg group.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


Sign in / Sign up

Export Citation Format

Share Document