Computational approaches for the discovery of natural pancreatic lipase inhibitors as antiobesity agents

2020 ◽  
Vol 12 (8) ◽  
pp. 741-757
Author(s):  
Ihab M Almasri

Obesity is becoming one of the greatest threats to global health in the 21st century and therefore the development of novel antiobesity drugs is one of the top priorities of global drug research. An important treatment strategy includes the reduction of intestinal fat absorption through the inhibition of pancreatic lipase (PL). Natural products provide a vast pool of PL inhibitors with novel scaffolds that can possibly be developed into clinical products. Computational drug design methods have become increasingly invaluable in the drug discovery process. In recent years, the discovery of new antiobesity PL inhibitors has been facilitated by the application of computational methods. This review highlights some computer-aided drug design techniques utilized in the discovery of natural PL inhibitors.

2017 ◽  
Vol 4 (4) ◽  
pp. 177-184 ◽  
Author(s):  
Raman P Yadav ◽  
Rinkey R Shahu ◽  
Sveeta Mhatre ◽  
Priyanka Rathod ◽  
Chandana Kulkarni

2016 ◽  
Vol 23 (17) ◽  
pp. 1708-1724 ◽  
Author(s):  
Eleni Vrontaki ◽  
Georgia Melagraki ◽  
Eleanna Kaffe ◽  
Thomas Mavromoustakos ◽  
George Kokotos ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

: The search for novel drugs that can prevent or control Alzheimer’s disease has attracted lot of attention from researchers across the globe. Phytochemicals are increasingly being used to provide scaffolds to design drugs for AD. In silico techniques, have proven to be a game-changer in this drug design and development process. In this review, the authors have focussed on current advances in the field of in silico medicine, applied to phytochemicals, to discover novel drugs to prevent or cure AD. After giving a brief context of the etiology and available drug targets for AD, authors have discussed the latest advances and techniques in computational drug design of AD from phytochemicals. Some of the prototypical studies in this area are discussed in detail. In silico phytochemical analysis is a tool of choice for researchers all across the globe and helps integrate chemical biology with drug design.


2020 ◽  
Vol 17 (2) ◽  
pp. 97-120
Author(s):  
Shabana Bibi ◽  
Yuan-Bing Wang ◽  
De-Xiang Tang ◽  
Mohammad Amjad Kamal ◽  
Hong Yu

: Some species of Cordyceps sensu lato are famous Chinese herbs with significant biological activities, often used as edible food and traditional medicine in China. Cordyceps represents the largest entomopathogenic group of fungi, including 40 genera and 1339 species in three families and incertae sedis of Hypocreales. Objective: Most of the Cordyceps-derivatives have been approved clinically for the treatment of various diseases such as diabetes, cancers, inflammation, cardiovascular, renal and neurological disorders and are used worldwide as supplements and herbal drugs, but there is still need for highly efficient Cordyceps-derived drugs for fatal diseases with approval of the U.S. Food and Drug Administration. Methods: Computer-aided drug design concepts could improve the discovery of putative Cordyceps- derived medicine within less time and low budget. The integration of computer-aided drug design methods with experimental validation has contributed to the successful discovery of novel drugs. Results: This review focused on modern taxonomy, active metabolites, and modern drug design techniques that could accelerate conventional drug design and discovery of Cordyceps s. l. Successful application of computer-aided drug design methods in Cordyceps research has been discussed. Conclusion: It has been concluded that computer-aided drug design techniques could influence the multiple target-focused drug design, because each metabolite of Cordyceps has shown significant activities for the various diseases with very few or no side effects.


2020 ◽  
Vol 19 (16) ◽  
pp. 1920-1934
Author(s):  
Xylia Q. Peters ◽  
Thembeka H. Malinga ◽  
Clement Agoni ◽  
Fisayo A. Olotu ◽  
Mahmoud E.S. Soliman

Background: Tankyrases are known for their multifunctionalities within the poly(ADPribose) polymerases family and playing vital roles in various cellular processes which include the regulation of tumour suppressors. Tankyrases, which exist in two isoforms; Tankyrase 1 and 2, are highly homologous and an integral part of the Wnt β -catenin pathway that becomes overly dysregulated when hijacked by pro-carcinogenic machineries. Methods: In this review, we cover the distinct roles of the Tankyrase isoforms and their involvement in the disease pathogenesis. Also, we provide updates on experimentally and computationally derived antagonists of Tankyrase whilst highlighting the precedence of integrative computer-aided drug design methods towards the discovery of selective inhibitors. Results: Despite the high prospects embedded in the therapeutic targeting and blockade of Tankyrase isoforms, the inability of small molecule inhibitors to achieve selective targeting has remained a major setback, even until date. This explains numerous incessant drug design efforts geared towards the development of highly selective inhibitors of the respective Tankyrase isoforms since they mediate distinct aberrancies in disease progression. Therefore, considering the setbacks of conventional drug design methods, can computer-aided approaches actually save the day? Conclusion: The implementation of computer-aided drug design techniques in Tankyrase research could help complement experimental methods and facilitate ligand/structure-based design and discovery of small molecule inhibitors with enhanced selectivity.


Sign in / Sign up

Export Citation Format

Share Document