Optimization for PID Control Parameters Tuning by Using Second-order Particle Swarm Optimization Based on Dynamic Adaptive

Author(s):  
Daizheng HUANG ◽  
Zhihui WU ◽  
Hua MO ◽  
Yan ZHANG
2011 ◽  
Vol 2-3 ◽  
pp. 12-17
Author(s):  
Sheng Lin Mu ◽  
Kanya Tanaka

In this paper, we propose a novel scheme of IMC-PID control combined with a tribes type neural network (NN) for the position control of ultrasonic motor (USM). In this method, the NN controller is employed for tuning the parameter in IMC-PID control. The weights of NN are designed to be updated by the tribes-particle swarm optimization (PSO) algorithm. This method makes it possible to compensate for the characteristic changes and nonlinearity of USM. The parameter-free tribes-PSO requires no information about the USM beforehand; hence its application overcomes the problem of Jacobian estimation in the conventional back propagation (BP) method of NN. The effectiveness of the proposed method is confirmed by experiments.


Author(s):  
Mahdieh Adeli ◽  
Hassan Zarabadipoor

In this paper, anti-synchronization of discrete chaotic system based on optimization algorithms are investigated. Different controllers have been used for anti-synchronization of two identical discrete chaotic systems. A proportional-integral-derivative (PID) control is used and its parameters is tuned by the four optimization algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO), modified particle swarm optimization (MPSO) and improved particle swarm optimization (IPSO). Simulation results of these optimization methods to determine the PID controller parameters to anti-synchronization of two chaotic systems are compared. Numerical results show that the improved particle swarm optimization has the best result.


Sign in / Sign up

Export Citation Format

Share Document