The Thermal Error Prediction Model of NC Processing Based on WA-LSSVM

2013 ◽  
Vol 8 (7) ◽  
pp. 63-72
Author(s):  
Wu Quan
2015 ◽  
Vol 789-790 ◽  
pp. 263-267
Author(s):  
Yan Lei Li ◽  
Ming Yan Wang ◽  
You Min Hu ◽  
Bo Wu

This paper proposes a new method to predict the spindle deformation based on temperature data. The method introduces ANFIS (adaptive neuro-fuzzy inference system). For building the predictive model, we first extract temperature data from sensors in the spindle, and then they are used as the inputs to train ANFIS. To evaluate the performance of the prediction, an experiment is implemented. Three Pt-100 thermal resistances is used to monitor the spindle temperature, and an inductive current sensor is used to obtain the spindle deformation. The experimental results display that our prediction model can better predict the spindle deformation and improve the performance of the spindle.


2009 ◽  
Vol 16-19 ◽  
pp. 410-414 ◽  
Author(s):  
Chang Long Zhao ◽  
Yi Qiang Wang ◽  
Xue Song Guan

In this paper, a hybrid method of correlation analysis based on the gray theory and the least squares support vector machine is proposed to model the thermal error of spindle of NC machine tool and predict the thermal error. The gray correlation analysis is used to optimize the measuring points of spindle. The optimum measuring points and the measured thermal error of spindle are regarded as the data to be trained to build the thermal error prediction model based on the least squares support vector machine (LS-SVM). The results show that the thermal error prediction model based on LS-SVM of NC machine tool has advantages of high precision and good generalization performance. The prediction model can be used in real-time compensation of NC machine tool and can prove the process precision and reduce cost.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 286
Author(s):  
Zhaolong Li ◽  
Bo Zhu ◽  
Ye Dai ◽  
Wenming Zhu ◽  
Qinghai Wang ◽  
...  

High-speed motorized spindle heating will produce thermal error, which is an important factor affecting the machining accuracy of machine tools. The thermal error model of high-speed motorized spindles can compensate for thermal error and improve machining accuracy effectively. In order to confirm the high precision thermal error model, Beetle antennae search algorithm (BAS) is proposed to optimize the thermal error prediction model of motorized spindle based on BP neural network. Through the thermal characteristic experiment, the A02 motorized spindle is used as the research object to obtain the temperature and axial thermal drift data of the motorized spindle at different speeds. Using fuzzy clustering and grey relational analysis to screen temperature-sensitive points. Beetle antennae search algorithm (BAS) is used to optimize the weights and thresholds of the BP neural network. Finally, the BAS-BP thermal error prediction model is established. Compared with BP and GA-BP models, the results show that BAS-BP has higher prediction accuracy than BP and GA-BP models at different speeds. Therefore, the BAS-BP model is suitable for prediction and compensation of spindle thermal error.


2020 ◽  
Vol 10 (8) ◽  
pp. 2870
Author(s):  
Yang Tian ◽  
Guangyuan Pan

Due to the large size of the heavy duty machine tool-foundation systems, space temperature difference is high related to thermal error, which affects to system’s accuracy greatly. The recent highly focused deep learning technology could be an alternative in thermal error prediction. In this paper, a thermal prediction model based on a self-organizing deep neural network (DNN) is developed to facilitate accurate-based training for thermal error modeling of heavy-duty machine tool-foundation systems. The proposed model is improved in two ways. Firstly, a dropout self-organizing mechanism for unsupervised training is developed to prevent co-adaptation of the feature detectors. In addition, a regularization enhanced transfer function is proposed to further reduce the less important weights of the process and improve the network feature extraction capability and generalization ability. Furthermore, temperature sensors are used to acquire temperature data from the heavy-duty machine tool and concrete foundation. In this way, sample data of thermal error predictive model are repeatedly collected from the same locations at different times. Finally, accuracy of the thermal error prediction model was validated by thermal error experiments, thus laying the foundation for subsequent studies on thermal error compensation.


2021 ◽  
Author(s):  
Wenjie Cao ◽  
Haolin Li ◽  
Qiang Li

Abstract In order to improve the machining accuracy of the thermal error prediction model of CNC machine tools, a new method for calculating the position of the measuring points optimal combination researched on linear correlation is proposed, according to the thermal-mechanical finite element analysis(FEA) model of spindle system established after analyzing the thermal characteristics of heat source temperature field of CNC machine tool spindle system. Based on the correlation analysis(CA) of the finite element model of heat source temperature field of CNC machine tool spindle system, combined with the concept of mutual information (MI), this method measures the information of the measurement point variables including the thermal error variables and uses principal component analysis (PCA) to eliminate the collinearity effect within measuring point variables. By using multilinear regression(MR), The thermal error prediction model(CAMI-PCAMR) is established. The accuracy of the prediction model is verified by comparing the actual measurement thermal error with the predicted thermal error through the experimental measurement and analysis of the thermal error of the CNC end grinder test machine tool system. That the axial prediction accuracy of this method can reach 1.099 \(\mu m\), and the prediction radial accuracy can reach 1.28 \(\mu m\) under the variable ambient condition, so as to provide parameters and theoretical guidance for embedding temperature sensors in the machine tool to compensate thermal error in the design stage. And the experimental results also show that the CAMI-PCAMR method is superior to the gray correlation and fuzzy clustering(FC-GCA) modeling method.


2012 ◽  
Vol 20 (2) ◽  
pp. 337-343 ◽  
Author(s):  
李醒飞 LI Xing-fei ◽  
董成军 DONG Cheng-jun ◽  
陈诚 CHEN Cheng ◽  
吴腾飞 WU Teng-fei ◽  
谭文斌 TAN Wen-bin

Sign in / Sign up

Export Citation Format

Share Document