Feasible Dynamic Simulation Method on 3D Welding Temperature Field and Stress Field Using Finite Element Model

Author(s):  
Qinghua Bai ◽  
Yuejin Ma ◽  
Weilian Sun
2016 ◽  
Vol 874 ◽  
pp. 261-267 ◽  
Author(s):  
Zhi Bo Yang ◽  
Zhen Zhang ◽  
Rui Yun Yang ◽  
Ai Ju Liu

During the dressing process of diamond wheel using laser/ultrasonic-vibration combined dressing method, the removal mode of the local materials on the surface of wheel with the use of laser’s heating effect transits from brittle fracture to plastic flow, so that the wear of diamond dresser can be reduced and the dressing efficiency and surface dressing quality can be improved. Using ANSYS analysis software, the three-dimensional units were used and the nonlinearity of the material’s thermophysical properties was taken into account, and thereby, the finite element model of the temperature field of the diamond wheel heated by the laser during the dressing process was constructed. Then, the distributions of the temperature field on the surface and section of the wheel under different technological parameter were acquired. Moreover, the temperature distribution of the dressed wheel under actual working conditions was measured using infrared temperature measurement method. The results indicate that, under the same working conditions, the simulation results using finite element model fit well with the measured values, i.e., the finite element model has important guiding significance to the selection of technological parameters in dressing.


1995 ◽  
Vol 3 (4) ◽  
pp. 423-429 ◽  
Author(s):  
Jürgen Wulf ◽  
Pete Lipetzky ◽  
Glenn E. Beltz ◽  
Thorsten Steinkopff

2021 ◽  
Author(s):  
Long Ma ◽  
Ping Ai ◽  
ChuanSheng Xiong

Abstract Aiming at the low simulation accuracy of the numerical simulation method of the joint response of the super-large section underground comprehensive pipeline gallery under the current complicated geological conditions, a numerical simulation method of the joint response of the super-large section underground comprehensive pipe gallery joint response under the complicated geological conditions based on the finite element model was proposed. According to the analysis process for the super-large section underground comprehensive pipe gallery, the viscous boundary of the comprehensive pipe gallery is determined. Additionally, by analyzing soil and structural parameters, the optimal combined dynamic boundary is used as the model boundary. The HSS model is used to describe the constitutive structure of the soil, and by improving the Goodman element to describe the contact surface of the model, the finite element model of the joint response of the comprehensive pipe gallery is constructed. Furthermore, based on the internal force balance and deformation coordination conditions, considering the influence of the deformation shape of the joint joints and the elongation of the prestressed tendons on the finite element model, the response model of the integrated pipe gallery joint is optimized. Experimental results show that the proposed method has higher numerical simulation accuracy.


2010 ◽  
Vol 449 ◽  
pp. 46-53
Author(s):  
J.A. Quintana-Rodríguez ◽  
J.F. Doyle ◽  
F.J. Carrión-Viramontes ◽  
Didier Samayoa-Ochoa ◽  
J. Alfredo López-López

Generally, simulation of non-homogeneous materials requires a homogeneous representation with equivalent properties different from the constitutive elements. Determination of the equivalent properties for dynamic simulation is not always a direct and straightforward calculation, as they have to represent, not only the static reactions, but also the dynamic behavior, which depends on a more complex relation of the geometrical (area, inertia moment), mechanical (elastic modulus) and physical (density) properties. In this context, the Direct Sensitivity Method (DSM) is developed to calibrate structural parameters of a finite element model using a priori information with an inverse parameter identification scheme, where parameters are optimized through an error sensitivity function using experimental data with the dynamic responses of the model. Results demonstrate that parameters of materials can be calibrated efficiently from the DSM and that key aspects for this calibration are noise, sensitivity (structural and sensor), and the finite element model representation.


Sign in / Sign up

Export Citation Format

Share Document