scholarly journals Numerical Simulation of The Response of An Underground Pipeline Connector With a Super-Large Section Under Complex Geological Conditions

Author(s):  
Long Ma ◽  
Ping Ai ◽  
ChuanSheng Xiong

Abstract Aiming at the low simulation accuracy of the numerical simulation method of the joint response of the super-large section underground comprehensive pipeline gallery under the current complicated geological conditions, a numerical simulation method of the joint response of the super-large section underground comprehensive pipe gallery joint response under the complicated geological conditions based on the finite element model was proposed. According to the analysis process for the super-large section underground comprehensive pipe gallery, the viscous boundary of the comprehensive pipe gallery is determined. Additionally, by analyzing soil and structural parameters, the optimal combined dynamic boundary is used as the model boundary. The HSS model is used to describe the constitutive structure of the soil, and by improving the Goodman element to describe the contact surface of the model, the finite element model of the joint response of the comprehensive pipe gallery is constructed. Furthermore, based on the internal force balance and deformation coordination conditions, considering the influence of the deformation shape of the joint joints and the elongation of the prestressed tendons on the finite element model, the response model of the integrated pipe gallery joint is optimized. Experimental results show that the proposed method has higher numerical simulation accuracy.

Author(s):  
Mario Mongiardini ◽  
Chiara Silvestri ◽  
Malcolm H. Ray

Traditionally the validation process of FE models is carried on by visually comparing two curves, respectively from an experimental test and the numerical simulation. A more rigorous way to quantitative compare two curves in the validation process would be provided by comparison metrics. In this work the component validation of the Finite Element model of a Knee-Thigh-Hip complex was carried on by quantitatively comparing the results from the experimental tests with the corresponding numerical curves. An LSDYNA finite element model of the lower extremities was developed and the condyle, pelvis and femur and components were carefully validated using three comparison metrics. The good match.


2013 ◽  
Vol 790 ◽  
pp. 391-395
Author(s):  
Tian Li ◽  
Qiao Ying Jiang

The finite element model of a separately built one-storey underground frame was set up with software ANSYS/LS-DYNA and numerical simulation was done to study on surface overpressure and deformation of the underground frame beam under internal blast loads. It is found that the overpressure peak values on the beam end and middle surface are both much higher when the explosive is below the middle of beam and the peak on the middle surface goes up with the increment of explosive height while that on the beam end surface is not sensitive to the height. The numerical result also indicates that the soil around the frame nearly has no effect on surface overpressure of the frame beam. However, whether there is soil or not the beam deformation has much difference and the increment of the deformation is closely all the same for different soil thicknesses but under the circumstance of thicker soil the beam obtains less deformation upward in a short time after explosion.


2020 ◽  
Vol 20 (1) ◽  
pp. 43-48
Author(s):  
Chenchen Han ◽  
Weidong Gao ◽  
Lifen Chen

AbstractDuring the air flow twisting process of jet vortex spinning, the moving characteristics of flexible free-end fiber are complex. In this paper, the finite element model of the fiber is established based on elastic thin rod element. According to the air pressure and velocity distribution in the airflow twisting chamber of jet vortex spinning, this paper analyzes the undetermined coefficients of the finite element kinetic differential equation of the free-end fiber following the principle of mechanical equilibrium, energy conservation, mass conservation and momentum conservation. Based on numerical simulation, this paper gets the trajectory of the free-end fiber. Finally, the theoretical result of the free-end fiber trajectory by finite element simulating is tested by an experimental method. This paper has proposed a new method to study the movement of the fiber and learn about the process and principle of jet vortex spinning.


2018 ◽  
Vol 38 ◽  
pp. 03012
Author(s):  
Li Lin Cao ◽  
Cheng Qian ◽  
Lan Zhe Chu ◽  
Guo Jun Yu

Studies on the dynamic properties of long-span floor is an essential basis for a solution to the problem of human-induced vibration serviceability. According to the recent research, this review introduces the application of numerical simulation in the research of dynamic properties and summarizes the modeling method of sophisticated finite element model. The reliability of the finite element model is verified by the field test and model test. Comparing the application of studies on dynamic properties among numerical simulation and model test, the differences between numerical simulation and model test are summarized. Finally, some problems that need further study are proposed.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2090-2094
Author(s):  
Bin Jia ◽  
Xiao Wei Zhu ◽  
Zhu Wen ◽  
Qi Jiang

The finite element model was established in this paper to study the process of dynamic response of RC frame structure under internal explosive loading. The burst point in the model was located in the center of the frame structure .The article analyzed the process of the dynamic response of the frame structure in the explosive environment and the result of the numerical simulation accorded well with the test. The result showed that the finite element model was feasible as well as providesed reference to the design and protection for the building structure.


2014 ◽  
Vol 620 ◽  
pp. 205-209 ◽  
Author(s):  
Zhen Zhong Shen ◽  
Bai Song Nie ◽  
Li Qun Xu ◽  
Lei Yang ◽  
Ning Wang

The stability of high rock slopes under the flood discharge atomization and rainfall is an in-negligible problem especially for the hydropower station with high head during the flood discharge. According to the complicated geological conditions of a high rock slope with the flood discharge problem in China, the method of the saturated-unsaturated unsteady seepage if used, thus the finite element model for the high rock slope in the downstream of the power station is set up. Based on the model, the distribution regularities of the unsteady seepage field of the rock slope is studied under the different discharge atomization and rainfall intensity. Moreover, based on the theory of continuous-discontinuous deformation, the finite element model is set up to analyze the stability of the slope, thus the deformation law of slopes under the flood discharge atomization and rainfall is studied and the safety of the slope is evaluated, and what's more, the engineering measures for improve the stability of the stability of the slope is put forward.


2013 ◽  
Vol 753-755 ◽  
pp. 1274-1278
Author(s):  
Xiu Chun Wu ◽  
Guo Hong Tian ◽  
Jie Liu

The computer simulation method is used to study the crashworthiness of car bumper system. Firstly, the CAD model of the car and bumper system is established in CATIA. The pre-processing for the model is finished in Hyper-Mesh and the finite element model is established. Then the process of crash simulation is calculated in Pam-Crash. The simulation results are compared with the test results to verify the accuracy of the finite element model. Finally, the low-speed crash simulation of the bumper system is conducted. The crash displacement and deformation of the bumper system are forecast through the process of simulation, which can provide a reference for the next design and improvement.


2012 ◽  
Vol 229-231 ◽  
pp. 55-58
Author(s):  
Jun Fan

To obtain the know-how of the deficiency for the filling capability, taking Ti75 alloy as the research object, at the same height of reducing, strain rates during forming as the control objective, the finite element numerical simulation method was used to simulate the hot compression with DEFORM-3D, analyzing the effect of the strain rates on the distribution of strain and stress.


Sign in / Sign up

Export Citation Format

Share Document