Mobile Robot System With Semi-Autonomous Navigation Using Simple And Robust Person Following Behavior

2012 ◽  
Vol 1 (1) ◽  
pp. 44-62 ◽  
Author(s):  
Yutaka Hiroi ◽  
Shohei Matsunaka ◽  
Akinori Ito
2014 ◽  
Vol 26 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Masashi Awai ◽  
◽  
Atsushi Yamashita ◽  
Takahito Shimizu ◽  
Toru Kaneko ◽  
...  

In this paper, we propose a mobile robot system which has functions of person following and autonomous returning. The robot realizes these functions by analyzing information obtained with camera and laser range finder. Person following is performed by using HOG features, color information, and pattern of range data. Along with person following, a map of the ambient environment is generated from range data. Autonomous returning to the starting point is performed by applying potential method to the generated map. We verified the proposed method by experiment using a wheel mobile robot in an indoor environment.


Author(s):  
Zheng Xiao

Background: In order to study the interference of wired transmission mode on robot motion, a mobile robot attitude calculation and debugging system based on radio frequency (RF) technology is proposed. Methods: Microcontroller STM32 has been used as the control core for the attitude information of the robot by using MEMS gyroscope and accelerometer. The optimal attitude Angle of the robot is calculated through nRF24L01 which is the core of the wireless communication module, attitude acquisition module and wireless data communication upper computer application platform. Results: The results shows that the positioning accuracy is better than±5mm. Conclusion: The experimental results show that the proposed attitude solving and debugging system of mobile robot based on RF technology has better reliability and real-time performance. The propped model is convenient for debugging of mobile robot system and has certain engineering application value.


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Meng-Yuan Chen ◽  
Yong-Jian Wu ◽  
Hongmei He

Abstract In this paper, we developed a new navigation system, called ATCM, which detects obstacles in a sliding window with an adaptive threshold clustering algorithm, classifies the detected obstacles with a decision tree, heuristically predicts potential collision and finds optimal path with a simplified Morphin algorithm. This system has the merits of optimal free-collision path, small memory size and less computing complexity, compared with the state of the arts in robot navigation. The modular design of 6-steps navigation provides a holistic methodology to implement and verify the performance of a robot’s navigation system. The experiments on simulation and a physical robot for the eight scenarios demonstrate that the robot can effectively and efficiently avoid potential collisions with any static or dynamic obstacles in its surrounding environment. Compared with the particle swarm optimisation, the dynamic window approach and the traditional Morphin algorithm for the autonomous navigation of a mobile robot in a static environment, ATCM achieved the shortest path with higher efficiency.


2006 ◽  
Vol 23 (6-7) ◽  
pp. 441-459 ◽  
Author(s):  
Patric Jensfelt ◽  
Gunnar Gullstrand ◽  
Erik Förell
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document