Mobile Robot Autonomous Navigation and Dynamic Environmental Adaptation in Large-Scale Outdoor Scenes

Author(s):  
Qifeng Yang ◽  
Daokui Qu ◽  
Fang Xu
2019 ◽  
Vol 39 (3) ◽  
pp. 469-478
Author(s):  
Qifeng Yang ◽  
Daokui Qu ◽  
Fang Xu ◽  
Fengshan Zou ◽  
Guojian He ◽  
...  

Purpose This paper aims to propose a series of approaches to solve the problem of the mobile robot motion control and autonomous navigation in large-scale outdoor GPS-denied environments. Design/methodology/approach Based on the model of mobile robot with two driving wheels, a controller is designed and tested in obstacle-cluttered scenes in this paper. By using the priori “topology-geometry” map constructed based on the odometer data and the online matching algorithm of 3D-laser scanning points, a novel approach of outdoor localization with 3D-laser scanner is proposed to solve the problem of poor localization accuracy in GPS-denied environments. A path planning strategy based on geometric feature analysis and priority evaluation algorithm is also adopted to ensure the safety and reliability of mobile robot’s autonomous navigation and control. Findings A series of experiments are conducted with a self-designed mobile robot platform in large-scale outdoor environments, and the experimental results show the validity and effectiveness of the proposed approach. Originality/value The problem of motion control for a differential drive mobile robot is investigated in this paper first. At the same time, a novel approach of outdoor localization with 3D-laser scanner is proposed to solve the problem of poor localization accuracy in GPS-denied environments. A path planning strategy based on geometric feature analysis and priority evaluation algorithm is also adopted to ensure the safety and reliability of mobile robot’s autonomous navigation and control.


Author(s):  
Noura Ayadi ◽  
Nabil Derbel ◽  
Nicolas Morette ◽  
Cyril Novales ◽  
Gérard Poisson

Abstract In recent years, autonomous navigation for mobile robots has been considered a highly active research field. Within this context, we are interested to apply the Simultaneous Localization And Mapping (SLAM) approach for a wheeled mobile robot. The Extended Kalman Filter has been chosen to perform the SLAM algorithm. In this work, we explicit all steps of the approach. Performances of the developed algorithm have been assessed through simulation in the case of a small scale map. Then, we present several experiments on a real robot that are proceeded in order to exploit a programmed SLAM unit and to generate the navigation map. Based on experimental results, simulation of the SLAM method in the case of a large scale map is then realized. Obtained results are exploited in order to evaluate and compare the algorithm’s consistency and robustness for both cases.


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Meng-Yuan Chen ◽  
Yong-Jian Wu ◽  
Hongmei He

Abstract In this paper, we developed a new navigation system, called ATCM, which detects obstacles in a sliding window with an adaptive threshold clustering algorithm, classifies the detected obstacles with a decision tree, heuristically predicts potential collision and finds optimal path with a simplified Morphin algorithm. This system has the merits of optimal free-collision path, small memory size and less computing complexity, compared with the state of the arts in robot navigation. The modular design of 6-steps navigation provides a holistic methodology to implement and verify the performance of a robot’s navigation system. The experiments on simulation and a physical robot for the eight scenarios demonstrate that the robot can effectively and efficiently avoid potential collisions with any static or dynamic obstacles in its surrounding environment. Compared with the particle swarm optimisation, the dynamic window approach and the traditional Morphin algorithm for the autonomous navigation of a mobile robot in a static environment, ATCM achieved the shortest path with higher efficiency.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yunxiao Shan ◽  
Shanghua Liu ◽  
Yunfei Zhang ◽  
Min Jing ◽  
Huawei Xu

Author(s):  
Muhammad Saad Aslam ◽  
Muhammad Irfan Aziz ◽  
Kanwal Naveed ◽  
Uzair Khaleeq uz Zaman

Author(s):  
Pamela Wiener ◽  
Christelle Robert ◽  
Abulgasim Ahbara ◽  
Mazdak Salavati ◽  
Ayele Abebe ◽  
...  

Abstract Great progress has been made over recent years in the identification of selection signatures in the genomes of livestock species. This work has primarily been carried out in commercial breeds for which the dominant selection pressures, are associated with artificial selection. As agriculture and food security are likely to be strongly affected by climate change, a better understanding of environment-imposed selection on agricultural species is warranted. Ethiopia is an ideal setting to investigate environmental adaptation in livestock due to its wide variation in geo-climatic characteristics and the extensive genetic and phenotypic variation of its livestock. Here, we identified over three million single nucleotide variants across 12 Ethiopian sheep populations and applied landscape genomics approaches to investigate the association between these variants and environmental variables. Our results suggest that environmental adaptation for precipitation-related variables is stronger than that related to altitude or temperature, consistent with large-scale meta-analyses of selection pressure across species. The set of genes showing association with environmental variables was enriched for genes highly expressed in human blood and nerve tissues. There was also evidence of enrichment for genes associated with high-altitude adaptation although no strong association was identified with hypoxia-inducible-factor (HIF) genes. One of the strongest altitude-related signals was for a collagen gene, consistent with previous studies of high-altitude adaptation. Several altitude-associated genes also showed evidence of adaptation with temperature, suggesting a relationship between responses to these environmental factors. These results provide a foundation to investigate further the effects of climatic variables on small ruminant populations.


2014 ◽  
Vol 496-500 ◽  
pp. 1643-1647
Author(s):  
Ying Feng Wu ◽  
Gang Yan Li

IR-based large scale volume localization system (LSVLS) can localize the mobile robot working in large volume, which is constituted referring to the MSCMS-II. Hundreds cameras in LSVLS must be connected to the control station (PC) through network. Synchronization of cameras which are mounted on different control stations is significant, because the image acquisition of the target must be synchronous to ensure that the target is localized precisely. Software synchronization method is adopted to ensure the synchronization of camera. The mean value of standard deviation of eight cameras mounted on two workstations is 12.53ms, the localization performance of LSVLS is enhanced.


Sign in / Sign up

Export Citation Format

Share Document