scholarly journals Autophagy genes promote apoptotic cell corpse clearance

Autophagy ◽  
2012 ◽  
Vol 8 (8) ◽  
pp. 1267-1268 ◽  
Author(s):  
Wei Zou ◽  
Xiaochen Wang ◽  
Ronald Vale ◽  
Guangshuo Ou
Autophagy ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 138-149 ◽  
Author(s):  
Shuyi Huang ◽  
Kailiang Jia ◽  
Ying Wang ◽  
Zheng Zhou ◽  
Beth Levine

Development ◽  
2011 ◽  
Vol 138 (10) ◽  
pp. 2003-2014 ◽  
Author(s):  
L. J. Neukomm ◽  
A.-S. Nicot ◽  
J. M. Kinchen ◽  
J. Almendinger ◽  
S. M. Pinto ◽  
...  

2014 ◽  
Vol 21 (6) ◽  
pp. 845-853 ◽  
Author(s):  
L J Neukomm ◽  
S Zeng ◽  
A P Frei ◽  
P A Huegli ◽  
M O Hengartner

Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4475-4488 ◽  
Author(s):  
Erik A. Lundquist ◽  
Peter W. Reddien ◽  
Erika Hartwieg ◽  
H. Robert Horvitz ◽  
Cornelia I. Bargmann

The Caenorhabditis elegans genome contains three rac-like genes, ced-10, mig-2, and rac-2. We report that ced-10, mig-2 and rac-2 act redundantly in axon pathfinding: inactivating one gene had little effect, but inactivating two or more genes perturbed both axon outgrowth and guidance. mig-2 and ced-10 also have redundant functions in some cell migrations. By contrast, ced-10 is uniquely required for cell-corpse phagocytosis, and mig-2 and rac-2 have only subtle roles in this process. Rac activators are also used differentially. The UNC-73 Trio Rac GTP exchange factor affected all Rac pathways in axon pathfinding and cell migration but did not affect cell-corpse phagocytosis. CED-5 DOCK180, which acts with CED-10 Rac in cell-corpse phagocytosis, acted with MIG-2 but not CED-10 in axon pathfinding. Thus, distinct regulatory proteins modulate Rac activation and function in different developmental processes.


2012 ◽  
Vol 209 (4) ◽  
pp. i5-i5
Author(s):  
Wei Li ◽  
Wei Zou ◽  
Yihong Yang ◽  
Yongping Chai ◽  
Baohui Chen ◽  
...  
Keyword(s):  

2017 ◽  
Vol 428 (1) ◽  
pp. 215-223 ◽  
Author(s):  
Dou Wu ◽  
Yongping Chai ◽  
Zhiwen Zhu ◽  
Wenjing Li ◽  
Guangshuo Ou ◽  
...  

2007 ◽  
Vol 15 (1) ◽  
pp. 192-201 ◽  
Author(s):  
S-Y Park ◽  
M-Y Jung ◽  
H-J Kim ◽  
S-J Lee ◽  
S-Y Kim ◽  
...  

2019 ◽  
Vol 218 (8) ◽  
pp. 2619-2637 ◽  
Author(s):  
Qiwen Gan ◽  
Xin Wang ◽  
Qian Zhang ◽  
Qiuyuan Yin ◽  
Youli Jian ◽  
...  

Phagocytic removal of apoptotic cells involves formation, maturation, and digestion of cell corpse–containing phagosomes. The retrieval of lysosomal components following phagolysosomal digestion of cell corpses remains poorly understood. Here we reveal that the amino acid transporter SLC-36.1 is essential for lysosome reformation during cell corpse clearance in Caenorhabditis elegans embryos. Loss of slc-36.1 leads to formation of phagolysosomal vacuoles arising from cell corpse–containing phagosomes. In the absence of slc-36.1, phagosome maturation is not affected, but the retrieval of lysosomal components is inhibited. Moreover, loss of PPK-3, the C. elegans homologue of the PtdIns3P 5-kinase PIKfyve, similarly causes accumulation of phagolysosomal vacuoles that are defective in phagocytic lysosome reformation. SLC-36.1 and PPK-3 function in the same genetic pathway, and they directly interact with one another. In addition, loss of slc-36.1 and ppk-3 causes strong defects in autophagic lysosome reformation in adult animals. Our findings thus suggest that the PPK-3–SLC-36.1 axis plays a central role in both phagocytic and autophagic lysosome formation.


2014 ◽  
Vol 25 (13) ◽  
pp. 2071-2083 ◽  
Author(s):  
Meng Xu ◽  
Yubing Liu ◽  
Liyuan Zhao ◽  
Qiwen Gan ◽  
Xiaochen Wang ◽  
...  

During programmed cell death, the clearance of apoptotic cells is achieved by their phagocytosis and delivery to lysosomes for destruction in engulfing cells. However, the role of lysosomal proteases in cell corpse destruction is not understood. Here we report the identification of the lysosomal cathepsin CPL-1 as an indispensable protease for apoptotic cell removal in Caenorhabditis elegans. We find that loss of cpl-1 function leads to strong accumulation of germ cell corpses, which results from a failure in degradation rather than engulfment. CPL-1 is expressed in a variety of cell types, including engulfment cells, and its mutation does not affect the maturation of cell corpse–containing phagosomes, including phagosomal recruitment of maturation effectors and phagosome acidification. Of importance, we find that phagosomal recruitment and incorporation of CPL-1 occurs before digestion of cell corpses, which depends on factors required for phagolysosome formation. Using RNA interference, we further examine the role of other candidate lysosomal proteases in cell corpse clearance but find that they do not obviously affect this process. Collectively, these findings establish CPL-1 as the leading lysosomal protease required for elimination of apoptotic cells in C. elegans.


Development ◽  
2012 ◽  
Vol 139 (24) ◽  
pp. 4613-4622 ◽  
Author(s):  
J. Huang ◽  
H. Wang ◽  
Y. Chen ◽  
X. Wang ◽  
H. Zhang

Sign in / Sign up

Export Citation Format

Share Document