scholarly journals The Survivin Isoform Survivin-3B is Cytoprotective and can Function as a Chromosomal Passenger Complex Protein

Cell Cycle ◽  
2007 ◽  
Vol 6 (12) ◽  
pp. 1501-1508 ◽  
Author(s):  
Shirley K. Knauer ◽  
Carolin Bier ◽  
Peter Schlag ◽  
Johannes Fritzmann ◽  
Wolfgang Dietmaier ◽  
...  
Biochemistry ◽  
2009 ◽  
Vol 48 (6) ◽  
pp. 1156-1161 ◽  
Author(s):  
Lihong Zhou ◽  
Jiejin Li ◽  
Roger George ◽  
Sandrine Ruchaud ◽  
Hong-Gang Zhou ◽  
...  

2022 ◽  
Author(s):  
Ewa Niedzialkowska ◽  
Tan M Truong ◽  
Luke A Eldredge ◽  
Stefanie Redemann ◽  
Denis Chretien ◽  
...  

The spindle midzone is a dynamic structure that forms during anaphase, mediates chromosome segregation, and provides a signaling platform to position the cleavage furrow. The spindle midzone comprises two antiparallel bundles of microtubules (MTs) but the process of their formation is poorly understood. Here, we show that the Chromosomal Passenger Complex (CPC) undergoes liquid-liquid phase separation (LLPS) to generate parallel MT bundles in vitro when incubated with free tubulin and GTP. MT bundles emerge from CPC droplets with protruding minus-ends that then grow into long, tapered MT structures. During this growth, the CPC in condensates apparently reorganize to coat and bundle the resulting MT structures. CPC mutants attenuated for LLPS or MT binding prevented the generation of parallel MT bundles in vitro and reduced the number of MTs present at spindle midzones in HeLa cells. Our data uncovers a kinase-independent function of the CPC and provides models for how cells generate parallel-bundled MT structures that are important for the assembly of the mitotic spindle.


2017 ◽  
Author(s):  
Aya Sato-Carlton ◽  
Chihiro Nakamura-Tabuchi ◽  
Stephane Kazuki Chartrand ◽  
Tomoki Uchino ◽  
Peter Mark Carlton

AbstractChromosomes that have undergone crossing-over in meiotic prophase must maintain sister chromatid cohesion somewhere along their length between the first and second meiotic divisions. While many eukaryotes use the centromere as a site to maintain cohesion, the holocentric organism C. elegans instead creates two chromosome domains of unequal length termed the short arm and long arm, which become the first and second site of cohesion loss at meiosis I and II. The mechanisms that confer distinct functions to the short and long arm domains remain poorly understood. Here, we show that phosphorylation of the synaptonemal complex protein SYP-1 is required to create these domains. Once crossovers are made, phosphorylated SYP-1 and PLK-2 become cooperatively confined to short arms and guide phosphorylated histone H3 and the chromosomal passenger complex to the site of meiosis I cohesion loss. Our results show that PLK-2 and phosphorylated SYP-1 ensure creation of the short arm subdomain, promoting disjunction of chromosomes in meiosis I.


2011 ◽  
Vol 193 (1) ◽  
pp. 155-169 ◽  
Author(s):  
Lindsay Lewellyn ◽  
Ana Carvalho ◽  
Arshad Desai ◽  
Amy S. Maddox ◽  
Karen Oegema

The chromosomal passenger complex (CPC) and centralspindlin are conserved cytokinesis regulators that localize to the spindle midzone, which forms between the separating chromosomes. Previous work placed the CPC and centralspindlin in a linear pathway that governs midzone formation. Using Caenorhabditis elegans embryos, we test whether there is a similar linear relationship between centralspindlin and the CPC in contractile ring constriction during cytokinesis. We show that simultaneous inhibition of the CPC kinase Aurora BAIR-2 and the centralspindlin component MKLP1ZEN-4 causes an additive constriction defect. Consistent with distinct roles for the proteins, inhibition of filamentous septin guanosine triphosphatases alleviates constriction defects in Aurora BAIR-2–inhibited embryos, whereas inhibition of Rac does so in MKLP1ZEN-4-inhibited embryos. Centralspindlin and the CPC are not required to enrich ring proteins at the cell equator but instead regulate formation of a compact mature ring. Therefore, in contrast to the linear midzone assembly pathway, centralspindlin and the CPC make independent contributions to control transformation of the sheet-like equatorial band into a ribbon-like contractile ring at the furrow tip.


2018 ◽  
Vol 217 (5) ◽  
pp. 1687-1700 ◽  
Author(s):  
Itziar Ibarlucea-Benitez ◽  
Luke S. Ferro ◽  
David G. Drubin ◽  
Georjana Barnes

Mitotic spindle disassembly after chromosome separation is as important as spindle assembly, yet the molecular mechanisms for spindle disassembly are unclear. In this study, we investigated how the chromosomal passenger complex (CPC), which contains the Aurora B kinase Ipl1, swiftly concentrates at the spindle midzone in late anaphase, and we researched the role of this dramatic relocalization during spindle disassembly. We showed that the kinesins Kip1 and Kip3 are essential for CPC relocalization. In cells lacking Kip1 and Kip3, spindle disassembly is severely delayed until after contraction of the cytokinetic ring. Purified Kip1 and Kip3 interact directly with the CPC and recruit it to microtubules in vitro, and single-molecule experiments showed that the CPC diffuses dynamically on microtubules but that diffusion stops when the CPC encounters a Kip1 molecule. We propose that Kip1 and Kip3 trap the CPC at the spindle midzone in late anaphase to ensure timely spindle disassembly.


Cytoskeleton ◽  
2012 ◽  
Vol 69 (10) ◽  
pp. 840-853 ◽  
Author(s):  
Haroula Argiros ◽  
Lauren Henson ◽  
Christiana Holguin ◽  
Victoria Foe ◽  
Charles Bradley Shuster

Sign in / Sign up

Export Citation Format

Share Document