scholarly journals DNA methylation and epigenetic control of cellular differentiation

Cell Cycle ◽  
2010 ◽  
Vol 9 (19) ◽  
pp. 3880-3883 ◽  
Author(s):  
David A. Khavari ◽  
George L. Sen ◽  
John L. Rinn
2015 ◽  
Vol 11 (7) ◽  
pp. 1786-1793 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Junying Zhang

DNA methylation is essential not only in cellular differentiation but also in diseases.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6039
Author(s):  
Bo Xu ◽  
Hao Wang ◽  
Li Tan

DNA methylation (5-methylcytosine, 5mC) was once viewed as a stable epigenetic modification until Rao and colleagues identified Ten-eleven translocation 1 (TET1) as the first 5mC dioxygenase in 2009. TET family genes (including TET1, TET2, and TET3) encode proteins that can catalyze 5mC oxidation and consequently modulate DNA methylation, not only regulating embryonic development and cellular differentiation, but also playing critical roles in various physiological and pathophysiological processes. Soon after the discovery of TET family 5mC dioxygenases, aberrant 5mC oxidation and dysregulation of TET family genes have been reported in breast cancer as well as other malignancies. The impacts of aberrant 5mC oxidation and dysregulated TET family genes on the different aspects (so-called cancer hallmarks) of breast cancer have also been extensively investigated in the past decade. In this review, we summarize current understanding of the causes and consequences of aberrant 5mC oxidation in the pathogenesis of breast cancer. The challenges and future perspectives of this field are also discussed.


Circulation ◽  
2011 ◽  
Vol 123 (25) ◽  
pp. 2916-2918 ◽  
Author(s):  
Marcus P. Cooper ◽  
John F. Keaney

2011 ◽  
Vol 16 (10) ◽  
pp. 1137-1152 ◽  
Author(s):  
Richard M. Eglen ◽  
Terry Reisine

Epigenetic control of the transciptome is a complex and highly coordinated cellular process. One critical mechanism involves DNA methylation, mediated by distinct but related DNA methyltransferases (DNMTs). Although several DNMT inhibitors are available, most are nonselective; selective DNMT inhibitors, therefore, could be optimal as therapeutics, as well acting as chemical probes to elucidate the fundamental biology of individual DNMTs. DNA methylation is a stable chemical modification, yet posttranslational modification of histones is transitory, with reversible effects on gene expression. Histone posttranslational modifications influence access of transcription factors to DNA target sites to affect gene activity. Histones are regulated by several enzymes, including acetylases (HATs), deacetylases (HDACs), methyltransferases (HMTs), and demethylases (HDMTs). Generally, HATs activate, whereas HDACs suppress gene activity. Specifically, HMTs and HDMTs can either activate or inhibit gene expression, depending on the site and extent of the methylation pattern. There is growing interest in drugs that target enzymes involved in epigenetic control. Currently, a range of high-throughput screening (HTS) technologies are used to identify selective compounds against these enzymes. This review focuses on the rationale for drug development of these enzymes, as well the utility of HTS methods used in identifying and optimizing novel selective compounds that modulate epigenetic control of the human transcriptome.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e25922 ◽  
Author(s):  
Kirsty Flower ◽  
David Thomas ◽  
James Heather ◽  
Sharada Ramasubramanyan ◽  
Susan Jones ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-2
Author(s):  
Lucia Latella ◽  
Daniela Palacios ◽  
Sonia Forcales ◽  
Pier Lorenzo Puri

Sign in / Sign up

Export Citation Format

Share Document