scholarly journals Therapeutic Promise and Principles: Metabotropic Glutamate Receptors

2008 ◽  
Vol 1 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Kenneth Maiese ◽  
Zhao Zhong Chong ◽  
Yan Chen Shang ◽  
Jinling Hou

For a number of disease entities, oxidative stress becomes a significant factor in the etiology and progression of cell dysfunction and injury. Therapeutic strategies that can identify novel signal transduction pathways to ameliorate the toxic effects of oxidative stress may lead to new avenues of treatment for a spectrum of disorders that include diabetes, Alzheimer's disease, Parkinson's disease and immune system dysfunction. In this respect, metabotropic glutamate receptors (mGluRs) may offer exciting prospects for several disorders since these receptors can limit or prevent apoptotic cell injury as well as impact upon cellular development and function. Yet the role of mGluRs is complex in nature and may require specific mGluR modulation for a particular disease entity to maximize clinical efficacy and limit potential disability. Here we discuss the potential clinical translation of mGluRs and highlight the role of novel signal transduction pathways in the metabotropic glutamate system that may be vital for the clinical utility of mGluRs.

1998 ◽  
Vol 79 (1) ◽  
pp. 379-391 ◽  
Author(s):  
Brian A. McCool ◽  
Jean-Phillipe Pin ◽  
Michael M. Harpold ◽  
Paul F. Brust ◽  
KENNETH A. Stauderman ◽  
...  

McCool, Brian A., Jean-Phillipe Pin, Michael M. Harpold, Paul F. Brust, Kenneth A. Stauderman, and David M. Lovinger. Rat group I metabotropic glutamate receptors inhibit neuronal Ca2+ channels via multiple signal transduction pathways in HEK 293 cells. J. Neurophysiol. 79: 379–391, 1998. We have shown previously that metabotropic glutamate receptors with group I-like pharmacology couple to N-type and P/Q-type calcium channels in acutely isolated cortical neurons using G proteins most likely belonging to the Gi/Go subclass. To better understand the potential mechanisms forming the basis for group I mGluR modulation of voltage-gated calcium channels in the CNS, we have examined the ability of specific mGluRs to couple to neuronal N-type (α1B-1/α2δ/β1b) and P/Q-type (α1A-2/α2δ/β1b) voltage-gated calcium channels in an HEK 293 heterologous expression system. Using the whole cell patch-clamp technique where intracellular calcium is buffered to low levels, we have shown that group I receptors inhibit both N-type and P/Q-type calcium channels in a voltage-dependent fashion. Similar to our observations in cortical neurons, this voltage-dependent inhibition is mediated almost entirely by N-ethylmaleimide (NEM)-sensitive heterotrimeric G proteins, strongly suggesting that these receptors can use Gi/Go-like G proteins to couple to N-type and P/Q-type calcium channels. However, inconsistent with the apparent NEM sensitivity of group I modulation of calcium channels, modulation of N-type channels in group I mGluR-expressing cells was only partially sensitive to pertussis toxin (PTX), indicating the potential involvement of both PTX-sensitive and -resistant G proteins. The PTX-resistant modulation was voltage dependent and entirely resistant to NEM and cholera toxin. A time course of treatment with PTX revealed that this toxin caused group I receptors to slowly shift from using a primarily NEM-sensitive G protein to using a NEM-resistant form. The PTX-induced switch from NEM-sensitive to -resistant modulation was also dependent on protein synthesis, indicating some reliance on active cellular processes. In addition to these voltage-dependent pathways, perforated patch recordings on group I mGluR-expressing cells indicate that another slowly developing, calcium-dependent form of modulation for N-type channels may be seen when intracellular calcium is not highly buffered. We conclude that group I mGluRs can modulate neuronal Ca2+ channels using a variety of signal transduction pathways and propose that the relative contributions of different pathways may exemplify the diversity of responses mediated by these receptors in the CNS.


2021 ◽  
Vol 10 (7) ◽  
pp. 1475
Author(s):  
Waldemar Kryszkowski ◽  
Tomasz Boczek

Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.


2003 ◽  
Vol 138 (8) ◽  
pp. 1417-1424 ◽  
Author(s):  
Hui-Fang Li ◽  
Meng-Ya Wang ◽  
Jessica Knape ◽  
Joan J Kendig

Sign in / Sign up

Export Citation Format

Share Document