scholarly journals Nuclear actin-related proteins at the core of epigenetic control

2010 ◽  
Vol 5 (5) ◽  
pp. 518-522 ◽  
Author(s):  
Richard B. Meagher ◽  
Muthugapatti K. Kandasamy ◽  
Aaron P. Smith ◽  
Elizabeth C. McKinney
Author(s):  
Richard B. Meagher ◽  
Muthugapatti K. Kandasamy ◽  
Elizabeth C. McKinney ◽  
Eileen Roy

2002 ◽  
Vol 115 (13) ◽  
pp. 2619-2622 ◽  
Author(s):  
Holly V. Goodson ◽  
William F. Hawse

Members of the actin family have well-characterized cytoskeletal functions,but actin and actin-related proteins (ARPs) have also been implicated in nuclear activities. Previous analyses of the actin family have identified four conserved subfamilies, but many actin-related proteins (ARPs) do not fall into these groups. A new systematic phylogenetic analysis reveals that at least eight ARP subfamilies are conserved from humans to yeast, indicating that these ARPs are part of the core set of eukaryotic proteins. Members of at least three subfamilies appear to be involved in chromatin remodeling,suggesting that ARPs play ancient, fundamental roles in this nuclear process.


2014 ◽  
Vol 207 (1) ◽  
pp. 91-105 ◽  
Author(s):  
Chikara Tanaka ◽  
Li-Jing Tan ◽  
Keisuke Mochida ◽  
Hiromi Kirisako ◽  
Michiko Koizumi ◽  
...  

In selective autophagy, degradation targets are specifically recognized, sequestered by the autophagosome, and transported into the lysosome or vacuole. Previous studies delineated the molecular basis by which the autophagy machinery recognizes those targets, but the regulation of this process is still poorly understood. In this paper, we find that the highly conserved multifunctional kinase Hrr25 regulates two distinct selective autophagy–related pathways in Saccharomyces cerevisiae. Hrr25 is responsible for the phosphorylation of two receptor proteins: Atg19, which recognizes the assembly of vacuolar enzymes in the cytoplasm-to-vacuole targeting pathway, and Atg36, which recognizes superfluous peroxisomes in pexophagy. Hrr25-mediated phosphorylation enhances the interactions of these receptors with the common adaptor Atg11, which recruits the core autophagy-related proteins that mediate the formation of the autophagosomal membrane. Thus, this study introduces regulation of selective autophagy as a new role of Hrr25 and, together with other recent studies, reveals that different selective autophagy–related pathways are regulated by a uniform mechanism: phosphoregulation of the receptor–adaptor interaction.


2011 ◽  
Vol 194 (5) ◽  
pp. 789-805 ◽  
Author(s):  
Jennifer L. Rohn ◽  
David Sims ◽  
Tao Liu ◽  
Marina Fedorova ◽  
Frieder Schöck ◽  
...  

Although a large number of actin-binding proteins and their regulators have been identified through classical approaches, gaps in our knowledge remain. Here, we used genome-wide RNA interference as a systematic method to define metazoan actin regulators based on visual phenotype. Using comparative screens in cultured Drosophila and human cells, we generated phenotypic profiles for annotated actin regulators together with proteins bearing predicted actin-binding domains. These phenotypic clusters for the known metazoan “actinome” were used to identify putative new core actin regulators, together with a number of genes with conserved but poorly studied roles in the regulation of the actin cytoskeleton, several of which we studied in detail. This work suggests that although our search for new components of the core actin machinery is nearing saturation, regulation at the level of nuclear actin export, RNA splicing, ubiquitination, and other upstream processes remains an important but unexplored frontier of actin biology.


1999 ◽  
Vol 10 (8) ◽  
pp. 2595-2605 ◽  
Author(s):  
Masahiko Harata ◽  
Yukako Oma ◽  
Shigeki Mizuno ◽  
Yi Wei Jiang ◽  
David J. Stillman ◽  
...  

Act3p/Arp4, an essential actin-related protein ofSaccharomyces cerevisiae located within the nucleus, is, according to genetic data, involved in transcriptional regulation. In addition to the basal core structure of the actin family members, which is responsible for ATPase activity, Act3p possesses two insertions, insertions I and II, the latter of which is predicted to form a loop-like structure protruding from beyond the surface of the molecule. Because Act3p is a constituent of chromatin but itself does not bind to DNA, we hypothesized that insertion II might be responsible for an Act3p-specific function through its interaction with some other chromatin protein. Far Western blot and two-hybrid analyses revealed the ability of insertion II to bind to each of the core histones, although with somewhat different affinities. Together with our finding of coimmunoprecipitation of Act3p with histone H2A, this suggests the in vivo existence of a protein complex required for correct expression of particular genes. We also show that a conditionalact3 mutation affects chromatin structure of an episomal DNA molecule, indicating that the putative Act3p complex may be involved in the establishment, remodeling, or maintenance of chromatin structures.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2814
Author(s):  
Wenyan Jiang ◽  
Xuechai Chen ◽  
Cuicui Ji ◽  
Wenting Zhang ◽  
Jianing Song ◽  
...  

Autophagy is an evolutionarily conserved pathway, in which cytoplasmic components are sequestered within double-membrane vesicles called autophagosomes and then transported into lysosomes or vacuoles for degradation. Over 40 conserved autophagy-related (ATG) genes define the core machinery for the five processes of autophagy: initiation, nucleation, elongation, closure, and fusion. In this review, we focus on one of the least well-characterized events in autophagy, namely the closure of the isolation membrane/phagophore to form the sealed autophagosome. This process is tightly regulated by ESCRT machinery, ATG proteins, Rab GTPase and Rab-related proteins, SNAREs, sphingomyelin, and calcium. We summarize recent progress in the regulation of autophagosome closure and discuss the key questions remaining to be addressed.


2009 ◽  
Vol 187 (6) ◽  
pp. 889-903 ◽  
Author(s):  
Timothy A. Schulz ◽  
Mal-Gi Choi ◽  
Sumana Raychaudhuri ◽  
Jason A. Mears ◽  
Rodolfo Ghirlando ◽  
...  

Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein–related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.


2011 ◽  
Vol 30 (11) ◽  
pp. 2153-2166 ◽  
Author(s):  
Sebastian Fenn ◽  
Dennis Breitsprecher ◽  
Christian B Gerhold ◽  
Gregor Witte ◽  
Jan Faix ◽  
...  

2011 ◽  
Vol 1 (4) ◽  
pp. 192-195 ◽  
Author(s):  
Sebastian Fenn ◽  
Christian B. Gerhold ◽  
Karl-Peter Hopfner

Sign in / Sign up

Export Citation Format

Share Document