scholarly journals Genetic analyses of the Arabidopsis 26S proteasome regulatory particle reveal its importance during light stress and a specific role for the N-Terminus of RPT2 in development.

2012 ◽  
Vol 7 (8) ◽  
pp. 973-978 ◽  
Author(s):  
Kwang-Hee Lee ◽  
Richard S. Marshall ◽  
Lucas M. Slivicke ◽  
Richard D. Vierstra
2002 ◽  
Vol 383 (7-8) ◽  
pp. 1263-1266 ◽  
Author(s):  
M. Takahashi ◽  
H. Iwasaki ◽  
H. Inoue ◽  
K. Takahashi

Abstract Reverse genetic analysis was performed on the Caenorhabditis elegans 26S proteasome subunit genes by doublestranded RNAmediated interference (RNAi). Embryonic and postembryonic lethality was caused by interference of all of the eight tested 20S core subunits and all of the 19S regulatory particle subunits except for CeRpn9, CeRpn10, and Ce Rpn12, where RNAi caused no abnormality. However, synthetic suppression of CeRpn10 and CeRpn12 was lethal, whereas neither the combination of Ce Rpn9 with CeRpn10 nor with CeRpn12 resulted in abnormalities in RNAi. These results indicate that the 26S proteasome is indispensable for embryogenesis and postembryonic development, although Ce Rpn9, CeRpn10, and CeRpn12 are not essential, at least under the conditions used. CeRpn10 and Ce Rpn12 are considered to compensate for the suppression of each other.


2013 ◽  
Vol 435 (2) ◽  
pp. 250-254 ◽  
Author(s):  
Stefan Bohn ◽  
Eri Sakata ◽  
Florian Beck ◽  
Ganesh R. Pathare ◽  
Jérôme Schnitger ◽  
...  

2002 ◽  
Vol 269 (5) ◽  
pp. 1474-1483 ◽  
Author(s):  
Tadashi Shibahara ◽  
Hiroshi Kawasaki ◽  
Hisashi Hirano

2008 ◽  
Vol 36 (5) ◽  
pp. 807-812 ◽  
Author(s):  
Rina Rosenzweig ◽  
Michael H. Glickman

Assembly of the 34-subunit, 2.5 MDa 26S proteasome is a carefully choreographed intricate process. It starts with formation of a seven-membered α-ring that serves as a template for assembly of the complementary β-ring-forming ‘half-proteasomes’. Dimerization results in a latent 20S core particle that can serve further as a platform for 19S regulatory particle attachment and formation of the biologically active 26S proteasome for ubiquitin-dependent proteolysis. Both general and dedicated proteasome assembly chaperones regulate the efficiency and outcome of critical steps in proteasome biogenesis, and in complex association.


2020 ◽  
Author(s):  
Rasmus Ree ◽  
Laura Kind ◽  
Anna Kaziales ◽  
Sylvia Varland ◽  
Minglu Dai ◽  
...  

AbstractThe actin cytoskeleton is of profound importance to cell shape, division, and intracellular force generation. Profilins bind to globular (G-)actin and regulate actin filament formation. Although profilins are well-established actin regulators, the distinct roles of the dominant profilin, profilin 1 (PFN1), versus the less abundant profilin 2 (PFN2) remain enigmatic. Here, we define a specific role for PFN2 as a stable interactor and regulator of the actin N-terminal acetyltransferase NAA80. PFN2 binding increases the intrinsic catalytic activity of NAA80. Furthermore, binding of PFN2 to NAA80 via its proline-rich loop promotes binding between the globular domains of actin and NAA80, and thus acetylation of actin. The majority of NAA80 is stably bound to PFN2, and we propose that this complex acetylates G-actin before it is incorporated into filaments. In conclusion, we reveal a functionally specific role of PFN2, and establish the modus operandi for NAA80-mediated actin N-terminal acetylation. Data are available via ProteomeXchange with identifier PXD020188.


Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 213 ◽  
Author(s):  
Minghui Bai ◽  
Xian Zhao ◽  
Kazutaka Sahara ◽  
Yuki Ohte ◽  
Yuko Hirano ◽  
...  

The 26S proteasome is a key player in the degradation of ubiquitinated proteins, comprising a 20S core particle (CP) and a 19S regulatory particle (RP). The RP is further divided into base and lid subcomplexes, which are assembled independently from each other. We have previously demonstrated the assembly pathway of the CP and the base by observing assembly intermediates resulting from knockdowns of each proteasome subunit and the assembly chaperones. In this study, we examine the assembly pathway of the mammalian lid, which remains to be elucidated. We show that the lid assembly pathway is conserved between humans and yeast. The final step is the incorporation of Rpn12 into the assembly intermediate consisting of two modular complexes, Rpn3-7-15 and Rpn5-6-8-9-11, in both humans and yeast. Furthermore, we dissect the assembly pathways of the two modular complexes by the knockdown of each lid subunit.


2015 ◽  
Vol 112 (28) ◽  
pp. 8626-8631 ◽  
Author(s):  
Antje Aufderheide ◽  
Florian Beck ◽  
Florian Stengel ◽  
Michaela Hartwig ◽  
Andreas Schweitzer ◽  
...  

In eukaryotic cells, the 26S proteasome is responsible for the regulated degradation of intracellular proteins. Several cofactors interact transiently with this large macromolecular machine and modulate its function. The deubiquitylating enzyme ubiquitin C-terminal hydrolase 6 [Ubp6; ubiquitin-specific protease (USP) 14 in mammals] is the most abundant proteasome-interacting protein and has multiple roles in regulating proteasome function. Here, we investigate the structural basis of the interaction between Ubp6 and the 26S proteasome in the presence and absence of the inhibitor ubiquitin aldehyde. To this end we have used single-particle electron cryomicroscopy in combination with cross-linking and mass spectrometry. Ubp6 binds to the regulatory particle non-ATPase (Rpn) 1 via its N-terminal ubiquitin-like domain, whereas its catalytic USP domain is positioned variably. Addition of ubiquitin aldehyde stabilizes the binding of the USP domain in a position where it bridges the proteasome subunits Rpn1 and the regulatory particle triple-A ATPase (Rpt) 1. The USP domain binds to Rpt1 in the immediate vicinity of the Ubp6 active site, which may effect its activation. The catalytic triad is positioned in proximity to the mouth of the ATPase module and to the deubiquitylating enzyme Rpn11, strongly implying their functional linkage. On the proteasome side, binding of Ubp6 favors conformational switching of the 26S proteasome into an intermediate-energy conformational state, in particular upon the addition of ubiquitin aldehyde. This modulation of the conformational space of the 26S proteasome by Ubp6 explains the effects of Ubp6 on the kinetics of proteasomal degradation.


Sign in / Sign up

Export Citation Format

Share Document