Electrokinetic Phenomena of Hydrophobic Particles with a Slip Surface

2021 ◽  
Vol 58 (4) ◽  
pp. 186-192
Author(s):  
Hiroyuki Ohshima
2014 ◽  
Vol 51 (3) ◽  
pp. 106-112
Author(s):  
Hiroyuki MAEDA ◽  
Masanori KOHNO ◽  
Yoshihiko SEKISHITA ◽  
Satoshi UEMATSU ◽  
Hiroshi NAYA

Landslides ◽  
2002 ◽  
Vol 39 (2) ◽  
pp. 280-281
Author(s):  
Masao YAMADA ◽  
Takayuki MAYUMI ◽  
Tadayoshi SUGISAKI ◽  
Shigeru YAMANAKA

1982 ◽  
Vol 14 (4-5) ◽  
pp. 253-256
Author(s):  
N Sriramula ◽  
M Chaudhuri

An investigation was undertaken on the removal of a model virus, bacterial virus MS2 against Escherichia coli, by sand filtration using untreated, and alum or cationic polyelectrolyte treated media, and uncoagulated as well as alum coagulated influent. Data on discrete virus removal were satisfactorily accounted for by electrokinetic phenomena and diffusion. For virus in association with turbidity, filter coefficients computed from experimental data were in good agreement with those predicted by mechanical straining and gravity settling which were the dominant mechanisms for removal of the turbidity particles to which the viruses attached.


Landslides ◽  
2021 ◽  
Author(s):  
Chuang Song ◽  
Chen Yu ◽  
Zhenhong Li ◽  
Veronica Pazzi ◽  
Matteo Del Soldato ◽  
...  

AbstractInterferometric Synthetic Aperture Radar (InSAR) enables detailed investigation of surface landslide movements, but it cannot provide information about subsurface structures. In this work, InSAR measurements were integrated with seismic noise in situ measurements to analyse both the surface and subsurface characteristics of a complex slow-moving landslide exhibiting multiple failure surfaces. The landslide body involves a town of around 6000 inhabitants, Villa de la Independencia (Bolivia), where extensive damages to buildings have been observed. To investigate the spatial-temporal characteristics of the landslide motion, Sentinel-1 displacement time series from October 2014 to December 2019 were produced. A new geometric inversion method is proposed to determine the best-fit sliding direction and inclination of the landslide. Our results indicate that the landslide is featured by a compound movement where three different blocks slide. This is further evidenced by seismic noise measurements which identified that the different dynamic characteristics of the three sub-blocks were possibly due to the different properties of shallow and deep slip surfaces. Determination of the slip surface depths allows for estimating the overall landslide volume (9.18 · 107 m3). Furthermore, Sentinel-1 time series show that the landslide movements manifest substantial accelerations in early 2018 and 2019, coinciding with increased precipitations in the late rainy season which are identified as the most likely triggers of the observed accelerations. This study showcases  the potential of integrating InSAR and seismic noise techniques to understand the landslide mechanism from ground to subsurface.


2013 ◽  
Vol 790 ◽  
pp. 146-149
Author(s):  
Jian Yun Chen ◽  
Shu Wang ◽  
Qiang Xu ◽  
Jing Li

Currently, the safety evaluation of gravity dam concentrates on stress and anti-sliding stability of the dam. A lot of research shows that the upper area of the dam is one of the whole dams weakest areas during an earthquake and should be studied in details. In this study, the genetic algorithm and non-linear FEM analysis are combined, then a search program is written to search the critical slip surface in the dams upper area. Finally, the surface which has the least anti-sliding stability coefficient is obtained, the most dangerous slip surface and its anti-sliding coefficient as well as the corresponding time are acquired to evaluate the safety of the dam.


2016 ◽  
Vol 121 (12) ◽  
pp. 7215-7234 ◽  
Author(s):  
Shuhei Ogawa ◽  
Yoshitaka Setoguchi ◽  
Kaori Kawana ◽  
Tomoki Nakayama ◽  
Yuka Ikeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document