model virus
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Francois Marie Ngako Kadji ◽  
Kazuki Kotani ◽  
Hiroshi Tsukamoto ◽  
Yosuke Hiraoka ◽  
Katsuro Hagiwara

Abstract The thermal stability of relevant viruses in gelatin liquid formulations for medical research and application is poorly understood. Bovine herpesvirus (BHV) was used as a model virus to examine the molecular weight (MW), concentration and gelatin type and to optimize virus stability in liquid formulations at 25 °C and 4 °C. Using the model virus stable liquid formulation, the stability of multiple enveloped and nonenveloped RNA and DNA viruses, including parainfluenza virus (PIV), reovirus (RV), BHV, and adenovirus (AdV), was monitored over up to a 30-week storage period. The BHV model virus was considered stable after 3 weeks in hydrolyzed gelatin (MW: 4000) with a 0.8 LRV (log10 reduction value) at 25 °C or a 0.2 LRV at 4 °C, compared to the stabilities observed in higher MW gelatin (60000 and 160000) with an LRV above 1. Based on the gelatin type, BHV in B-type gelatin samples were unexpectantly more stable than in A-type gelatin sample. All four viruses exhibited stability at 4 °C for at least 8 weeks, BHV or AdV remained stable for over 30 weeks of storage, and at 25 °C, AdV and RV remained stable for 8 weeks. The results demonstrated that 5% hydrolyzed gelatin can act as a relevant stabilizer for the thermal stability of viruses in medical research and application.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hui-Hua Zheng ◽  
Yi-Lin Bai ◽  
Tong Xu ◽  
Lan-Lan Zheng ◽  
Xin-Sheng Li ◽  
...  

To understand the biological characteristics of the reemerging pseudorabies virus (PRV) strains, a total of 392 tissue samples were collected from diseased pigs during reemerging PR outbreaks between 2012 and 2019 on farms in central China where swine had been immunized with Bartha-K61 and 51 (13. 01%) were positive for the gE gene by PCR. Sixteen PRV strains were isolated and caused clinical symptoms and death in mice. Subsequently, gE, gC, gB, and gD complete genes were amplified from the 16 PRV isolates and sequenced. Phylogenetic analysis based on these four gene sequences shows that the 16 PRV isolates were more closely related to the Chinese PRV variants (after 2012) but genetically differed from early Chinese PRV isolates (before 2012). Sequence analysis reveals that PRV isolates exhibited amino acid insertions, substitutions, or deletions compared with early Chinese PRV isolates and European–American PRV strains. In addition, this is the first report that eight isolates (8/16) in this study harbor a unique amino acid substitution at position 280 (F to L) of the gC protein, and six isolates have an amino acid substitution at position 338 (A to V) of the gD protein compared with the Chinese PRV variants. The emulsion containing inactivated PRV NY isolate could provide complete protection against the NY isolate. This study might enrich our understanding of the evolution of reemerging PRV strains as well as pave the way for finding a model virus to develop a novel vaccine based on reemerging PRV strains.


2021 ◽  
Author(s):  
Maria Vittoria Salvati ◽  
Claudio Salaris ◽  
Vanessa Monteil ◽  
Claudia Del Vecchio ◽  
Giorgio Palù ◽  
...  

Crimean-Congo hemorrhagic fever (CCHF) is a severe disease of humans caused by CCHF virus (CCHFV), a biosafety level (BSL)-4 pathogen. Ticks of the genus Hyalomma are the viral reservoir and they represent the main vector transmitting the virus to its hosts during blood feeding. We have previously shown that CCHFV can persistently infect Hyalomma -derived tick cell lines. However, the mechanism allowing the establishment of persistent viral infections in ticks is still unknown. Hazara virus (HAZV) can be used as a BSL-2 model virus instead of CCHFV to study virus/vector interactions. To investigate the mechanism behind the establishment of a persistent infection, we developed an in vitro model with Hyalomma -derived tick cell lines and HAZV. As expected, HAZV, like CCHFV, persistently infects tick cells without any sign of cytopathic effect, and the infected cells can be cultured for more than three years. Most interestingly, we demonstrated the presence of short viral-derived DNA forms (vDNAs) after HAZV infection. Furthermore, we demonstrated that the antiretroviral drug AZT could inhibit the production of vDNAs, suggesting that vDNAs are produced by an endogenous retrotranscriptase activity in tick cells. Moreover, we collected evidence that vDNAs are continuously synthesized, thereby downregulating viral replication to promote cell survival. Finally, vDNAs were also detected in CCHFV-infected tick cells. In conclusion, vDNA synthesis might represent a strategy to control the replication of RNA viruses in ticks allowing their persistent infection. IMPORTANCE Crimean-Congo hemorrhagic fever (CCHF) is an emerging tick-borne viral disease caused by CCHF virus (CCHFV). Ticks of the genus Hyalomma can be persistently infected with CCHFV representing the viral reservoir, and the main vector for viral transmission. Here we showed that tick cells infected with Hazara virus, a nonpathogenic model virus closely related to CCHFV, contained short viral-derived DNA forms (vDNAs) produced by endogenous retrotranscriptase activity. vDNAs are transitory molecules requiring viral RNA replication for their continuous synthesis. Interestingly, vDNA synthesis seemed to be correlated with downregulation of viral replication and promotion of tick cell viability. We also detected vDNAs in CCHFV-infected tick cells suggesting that they could represent a key element in the cell response to nairovirus infection and might represent a more general mechanism of innate immunity against RNA viral infection.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 614
Author(s):  
Nina Weiler ◽  
Caroline Paal ◽  
Kerstin Adams ◽  
Christopher Calcaterra ◽  
Dina Fischer ◽  
...  

The role of viral envelope glycoproteins, particularly the accessory proteins of trimeric and pentameric gH/gL-complexes, in cell-associated spread of human cytomegalovirus (HCMV) is unclear. We aimed to investigate their contribution in the context of HCMV variants that grow in a strictly cell-associated manner. In the genome of Merlin pAL1502, the glycoproteins gB, gH, gL, gM, and gN were deleted by introducing stop codons, and the mutants were analyzed for viral growth. Merlin and recent HCMV isolates were compared by quantitative immunoblotting for expression of accessory proteins of the trimeric and pentameric gH/gL-complexes, gO and pUL128. Isolates were treated with siRNAs against gO and pUL128 and analyzed regarding focal growth and release of infectious virus. All five tested glycoproteins were essential for growth of Merlin pAL1502. Compared with this model virus, higher gO levels were measured in recent isolates of HCMV, and its knockdown decreased viral growth. Knockdown of pUL128 abrogated the strict cell-association and led to release of infectivity, which allowed cell-free transfer to epithelial cells where the virus grew again strictly cell-associated. We conclude that both trimer and pentamer contribute to cell-associated spread of recent clinical HCMV isolates and downregulation of pentamer can release infectious virus into the supernatant.


2021 ◽  
Author(s):  
Jing Yang (Sunny) Xi ◽  
Wai Kin (Victor) Chan

ABSTRACTThe safety of students worldwide remains a key issue during COVID-19. The reopening of universities in high risk countries during Fall 2020 resulted in numerous outbreaks. While regular screening and testing on campus can prevent the transmission of SARS-CoV-2, they are extremely challenging to implement due to various reasons such as cost and logistics. However, for low risk countries, our study suggests that universities can fully reopen without testing, if students self-quarantine for 14 days on arrival and adopt proper nonpharmaceutical interventions (NPIs). We adopt agent-based simulation to model virus transmission on campus and test the effectiveness of several NPIs when school reopens. Assuming one initially infected student, results indicate that transmission between roommates causes the most infections with visitors, ground floors, and elevators, being the next main contributors. Limiting density and/or population are not impactful at flattening the curve. However, adopting masks, minimizing movement, and increasing the frequency of cleaning can effectively minimize infection and prevent outbreak, allowing for classes and activities to resume as normal.


Author(s):  
Michael Versoza ◽  
Jaeseok Heo ◽  
Sangwon Ko ◽  
Minjeong Kim ◽  
Duckshin Park

Normal heating, ventilation, and air conditioning (HVAC) systems typically use high-efficiency particulate air (HEPA) filters, which can filter dust, various pollutants, and even bacteria and viruses from indoor air. However, since HEPA filters cannot not clean themselves and due to the nature of these microbes which can survive for long periods of time, changing these filters improperly could transmit pathogenic bacteria or viruses, and could even lead to new infections. This study indicated that these manufactured Solid Oxygen-purifying (SOP) filters have the potential to self-disinfect, filter, and inactivate aerosolized viruses. MS2 bacteriophage was used as a model virus in two different experiments. The first experiment involved aerosolization of the virus, while the second were a higher viral load using a soaking method. The SOP filters inactivated up to 99.8% of the virus particles in both experiments, provided that the density of the SOP filter was high. Thus, SOP filters could self-clean, which led to protection against airborne and aerosolized viruses by inactivating them on contact. Furthermore, SOP filters could be potentially use or addition in HVAC systems and face masks to prevent the transmission of airborne and aerosolized viruses.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 762
Author(s):  
Harriet Whiley ◽  
Thilini Piushani Keerthirathne ◽  
Muhammad Atif Nisar ◽  
Mae A. F. White ◽  
Kirstin E. Ross

In response to the Coronavirus Disease 2019 (COVID-19) pandemic, current modeling supports the use of masks in community settings to reduce the transmission of SARS-CoV-2. However, concerns have been raised regarding the global shortage of medical grade masks and the limited evidence on the efficacy of fabric masks. This study used a standard mask testing method (ASTM F2101-14) and a model virus (bacteriophage MS2) to test the viral filtration efficiency (VFE) of fabric masks compared with commercially available disposable, surgical, and N95 masks. Five different types of fabric masks were purchased from the ecommerce website Etsy to represent a range of different fabric mask designs and materials currently available. One mask included a pocket for a filter; which was tested without a filter, with a dried baby wipe, and a section of a vacuum cleaner bag. A sixth fabric mask was also made according to the Victorian Department of Health and Human Services (DHHS) guidelines (Australia). Three masks of each type were tested. This study found that all the fabric masks had a VFE of at least 50% when tested against aerosols with an average size of 6.0 µm (VFE(6.0 µm)). The minimum VFE of fabric masks improved (to 63%) when the larger aerosols were excluded to give and average aerosol size of 2.6 µm (VFE(2.6 µm)), which better represents inhaled aerosols that can reach the lower respiratory system. The best performing fabric masks were the cotton mask with a section of vacuum cleaner bag (VFE(6.0 µm) = 99.5%, VFE(2.6 µm) = 98.8%) or a dried baby wipe (VFE(6.0 µm) = 98.5%, VFE(2.6 µm) = 97.6%) in the pocket designed for a disposable filter, the mask made using the Victorian DHHS design (VFE(6.0 µm) = 98.6%, VFE(2.6 µm) =99.1%) and one made from a layer of 100% hemp, a layer of poly membrane, and a layer of cheesecloth (VFE(6.0 µm) = 93.6%, VFE(2.6 µm) = 89.0%). The VFE of two surgical masks (VFE(6.0 µm) = 99.9% and 99.6%, VFE(2.6 µm) = 99.5% and 98.5%) and a N95 masks (VFE(6.0 µm) = 99.9%, VFE(2.6 µm) = 99.3%) were comparable to their advertised bacterial filtration efficacy. This research supports the use of fabric masks in the community to prevent the spread of SARS-CoV-2; however, future research is needed to explore the optimum design in ensuring proper fit. There is also a need for mass education campaigns to disseminate this information, along with guidelines around the proper usage and washing of fabric masks.


Biomedicines ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 209 ◽  
Author(s):  
Lulu Wu ◽  
Athanasios Mantas ◽  
Simon Gustafsson ◽  
Levon Manukyan ◽  
Albert Mihranyan

This study is dedicated to the rapid removal of protein aggregates and viruses from plasma-derived human serum albumin (HSA) product to reduce the risk of viral contamination and increase biosafety. A two-step filtration approach was implemented to first remove HSA aggregates and then achieve high model virus clearance using a nanocellulose-based filter paper of different thicknesses, i.e., 11 μm (prefilter) and 22 μm (virus filter) at pH 7.4 and room temperature. The pore size distribution of these filters was characterized by nitrogen gas sorption analysis. Dynamic light scattering (DLS) and size-exclusion high performance liquid chromatography (SE-HPLC) were performed to analyze the presence of HSA aggregates in process intermediates. The virus filter showed high clearance of a small-size model virus, i.e., log10 reduction value (LRV) > 5, when operated at 3 and 5 bar, but a distinct decrease in LRV was detected at 1 bar, i.e., LRV 2.65–3.75. The throughput of HSA was also dependent on applied transmembrane pressure as was seen by Vmax values of 110 ± 2.5 L m−2 and 63.6 ± 5.8 L m−2 at 3 bar and 5 bar, respectively. Protein loss was low, i.e., recovery > 90%. A distribution of pore sizes between 40 nm and 60 nm, which was present in the prefilter and absent in the virus filter, played a crucial part in removing the HSA aggregates and minimizing the risk of virus filter fouling. The presented results enable the application of virus removal nanofiltration of HSA in bioprocessing as an alternative to virus inactivation methods based, e.g., on heat treatment.


2020 ◽  
Vol 27 (1) ◽  
pp. 125-136.e7 ◽  
Author(s):  
Liuliu Yang ◽  
Yuling Han ◽  
Benjamin E. Nilsson-Payant ◽  
Vikas Gupta ◽  
Pengfei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document