The production of lignin-capped silver nanoparticles with high antimicrobial activity against multidrug resistant bacteria

2017 ◽  
Vol 08 (05) ◽  
Author(s):  
Jason Asnis
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Amr T. M. Saeb ◽  
Ahmad S. Alshammari ◽  
Hessa Al-Brahim ◽  
Khalid A. Al-Rubeaan

Aims. To synthesize, characterize, and analyze antimicrobial activity of AgNPs ofEscherichia hermannii(SHE),Citrobacter sedlakii(S11P), andPseudomonas putida(S5).Methods. The synthesized AgNPs were examined using ultraviolet-visible spectroscopy (UV-vis) and, zeta potential, and the size and the morphology obtained from the three different isolates were also confirmed by TEM.Results. Among the three isolates tested, SHE showed the best antimicrobial activity due to the presence of small (4–12 nm) and stable (−22 mV) AgNPs. Stability of AgNPs was also investigated and found to be dependent on the nature of isolates.Conclusion. Produced AgNPs showed particle stability and antimicrobial efficacy up to 90 days of production. Our AgNPs exhibited greater antimicrobial activity compared with gentamicin againstP. aeruginosaisolates and vancomycin againstS. aureusand MRSA isolates at very low concentration (0.0002 mg per Microliters).


2021 ◽  
Vol 11 (19) ◽  
pp. 9340
Author(s):  
Surbhi Shinde ◽  
Veronica Folliero ◽  
Annalisa Chianese ◽  
Carla Zannella ◽  
Anna De Filippis ◽  
...  

The increase in multidrug-resistant bacteria represents a true challenge in the pharmaceutical and biomedical fields. For this reason, research on the development of new potential antibacterial strategies is essential. Here, we describe the development of a green system for the synthesis of silver nanoparticles (AgNPs) bioconjugated with chitosan. We optimized a Prunus cerasus leaf extract as a source of silver and its conversion to chitosan–silver bioconjugates (CH-AgNPs). The AgNPs and CH-AgNPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), ultraviolet–visible spectroscopy (UV–Vis), and zeta potential measurement (Z-potential). The cytotoxic activity of AgNPs and CH-AgNPs was assessed on Vero cells using the 3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The antibacterial activity of AgNPs and CH-AgNPs synthesized using the green system was determined using the broth microdilution method. We evaluated the antimicrobial activity against standard ATCC and clinically isolated multisensitive (MS) and multidrug-resistant bacteria (MDR) Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), Klebsiella pneumonia (K. pneumoniae), and Staphylococcus aureus (S. aureus), using minimum inhibitory concentration (MIC) assays and the broth dilution method. The results of the antibacterial studies demonstrate that the silver chitosan bioconjugates were able to inhibit the growth of MDR strains more effectively than silver nanoparticles alone, with reduced cellular toxicity. These nanoparticles were stable in solution and had wide-spectrum antibacterial activity. The synthesis of silver and silver chitosan bioconjugates from Prunus cerasus leaf extracts may therefore serve as a simple, ecofriendly, noncytotoxic, economical, reliable, and safe method to produce antimicrobial compounds with low cytotoxicity.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Emerson Danguy Cavassin ◽  
Luiz Francisco Poli de Figueiredo ◽  
José Pinhata Otoch ◽  
Marcelo Martins Seckler ◽  
Roberto Angelo de Oliveira ◽  
...  

2020 ◽  
Vol 149 ◽  
pp. 104529
Author(s):  
Jorge Belém Oliveira-Júnior ◽  
Everton Morais da Silva ◽  
Dyana Leal Veras ◽  
Karla Raíza Cardoso Ribeiro ◽  
Catarina Fernandes de Freitas ◽  
...  

2007 ◽  
Vol 38 (4) ◽  
pp. 704-709 ◽  
Author(s):  
Paulo André Vicente Fernandes ◽  
Isabel Renata de Arruda ◽  
Antônio Fernando Amatto Botelho dos Santos ◽  
Ana Albertina de Araújo ◽  
Ana Maria Souto Maior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document