Identification, Validation of a SSR Marker and Marker Assisted Selection for the Goat Grass Derived Seedling Resistance Gene Lr28 in Wheat

2015 ◽  
Vol 06 (06) ◽  
Author(s):  
Pallavi JK Anupam Singh
Plant Disease ◽  
2002 ◽  
Vol 86 (12) ◽  
pp. 1303-1309 ◽  
Author(s):  
E. S. Johnson ◽  
M. F. Wolff ◽  
E. A. Wernsman ◽  
R. C. Rufty

Bulked segregant (BSA) and random amplified polymorphic DNA (RAPD) analyses were used to identify markers linked to the dominant black shank resistance gene, Ph, from flue-cured tobacco (Nicotiana tabacum) cv. Coker 371-Gold. Sixty RAPD markers, 54 in coupling and 6 in repulsion phase linkage to Ph, were identified in a K 326-derived BC1F1 (K 326-BC1F1) doubled haploid (DH) population. Thirty RAPD markers, 26 in coupling and 4 in repulsion phase linkage to Ph, were used to screen 149 K 326-BC2F1 haploid plants. Complete linkage between the 26 coupling phase markers and Ph was confirmed by screening 149 K 326-BC2F1 DH lines produced from the haploid plants in black shank nurseries. RAPD markers OPZ-5770 in coupling and OPZ-7370 in repulsion phase linkage were used to select plants homozygous for the Ph gene for further backcrossing to the widely grown flue-cured cultivar K 326. Black shank disease nursery evaluation of 11 K 326-BC4S1 lines and their testcross hybrids to a susceptible tester confirmed linkage between Ph and OPZ-5770. The results demonstrated the efficiency of marker-assisted selection for Ph using a RAPD marker linked in coupling and repulsion. Complete linkage between 26 RAPD markers and the Ph gene was confirmed in the K 326-BC5 generation, and RAPD phenotypes were stable across generations and ploidy levels. These RAPD markers are useful in marker-assisted selection for Ph, an important black shank resistance gene in tobacco.


Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 925-931 ◽  
Author(s):  
Pengtao Ma ◽  
Hongxing Xu ◽  
Yunfeng Xu ◽  
Liping Song ◽  
Shuoshuo Liang ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a serious disease of wheat (Triticum aestivum L.) throughout the world. Host resistance is the most effective and preferred means for managing this disease. Line 10V-2, a wheat breeding line with superior agronomic performance, shows broad-spectrum seedling resistance to powdery mildew. Genetic analysis demonstrated that its resistance was controlled by a single dominant gene, tentatively designated Pm10V-2. This gene was localized near the documented Pm2 locus on chromosome 5DS using the simple sequence repeat (SSR) marker Cfd81. To saturate the marker map of Pm10V-2, more markers were developed using bulked segregant RNA-Seq. Two single-nucleotide polymorphism (SNP) markers (Swgi047 and Swgi064), three expressed sequence tag markers (Swgi007, Swgi029, and Swgi038), and one SSR marker (Swgi066) were polymorphic between the resistant and susceptible bulks and showed tightly linked to the Pm10V-2 gene. Pm10V-2 was flanked by the new developed markers Swgi064 and Swgi066 at genetic distances of 0.4 and 1.2 centimorgans (cM), respectively, and cosegregated with Swgi007 and Swgi038. The homologous sequence of Pm2a was cloned from 10V-2 based on a recent study. Although the sequence cloned from 10V-2 was completely identical to that of the reported Pm2a-related gene, they did not cosegregate but were separated at a genetic distance of 1.6 cM, indicating that Pm10V-2 was different from the reported of Pm2a-related gene. When inoculated with multiple B. graminis f. sp. tritici isolates, Pm10V-2 had a significantly different resistance spectrum from Pm2a and other powdery mildew (Pm) resistance genes at or near the Pm2 locus. Therefore, Pm10V-2 may be a new Pm2 allele or Pm2-linked gene. To use Pm10V-2 in marker-assisted selection (MAS) breeding, seven markers applicable for MAS were confirmed, including three newly developed markers (Swgi029, Swgi038, and Swgi064) in the present work. Using these markers, a great number of resistant lines with desirable agronomic performance were selected from crosses involving 10V-2, including the breeding line KM5016, which has been entered in the Regional trials in Hebei Province, China.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 631-635 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
J. Huerta-Espino ◽  
V. Calvo-Salazar ◽  
C. X. Lan ◽  
R. P. Singh

Leaf rust, caused by Puccinia triticina (Pt), has become a globally important disease for durum wheat (Triticum turgidum subsp. durum) since the detection of race group BBG/BN, which renders ineffective a widely deployed seedling resistance gene present in several popular cultivars including Mexican cultivars Altar C84 and Atil C2000. The resistance gene continues to play a key role in protecting durum wheat against bread wheat–predominant races since virulence among this race group has not been found. We developed F3 and F5 mapping populations from a cross between Atil C2000 and the susceptible line Atred #1. Resistance was characterized by greenhouse seedling tests using three Pt races. Segregation tests indicated the presence of a single gene, which was mapped to the distal end of 7BS by bulk segregant analysis. The closest marker, wmc606, was located 5.5 cM proximal to the gene. No known leaf rust resistance genes are reported in this region; this gene was therefore designated as Lr72. The presence of Lr72 was further investigated in greenhouse tests in a collection of durum wheat using 13 Pt races. It was concluded that at least one additional gene protects durum wheat from bread wheat–predominant Pt races.


Sign in / Sign up

Export Citation Format

Share Document