scholarly journals Effect of Hydraulic Retention Time (HRT) on Surveillance of Coliforms in Waste Stabilization Pond (WSP) System in Central India

2013 ◽  
Vol 09 (01) ◽  
Author(s):  
Kapilesh Jadhav ◽  
Indrani Jadhav ◽  
Bilore SK
1995 ◽  
Vol 31 (12) ◽  
pp. 267-273 ◽  
Author(s):  
B. S. O. Ceballos ◽  
A. Konig ◽  
B. Lomans ◽  
A. B. Athayde ◽  
H. W. Pearson

A single full-scale primary facultative pond in Sapé, north-east Brazil was monitored for performance and efficiency. The pond had a hydraulic retention time of 61 days and achieved a 95% BOD5 removal efficiency and had no helminth eggs in the effluent. The effluent failed to meet the WHO faecal coliform guideline for unrestricted irrigation. The pond was dominated by the cyanobacterium Microcystis and gave better than predicted orthophosphate removal. Details of how the system could be simply upgraded utilizing the same land are discussed.


2005 ◽  
Vol 51 (12) ◽  
pp. 75-81 ◽  
Author(s):  
C.G. Banda ◽  
P.A. Sleigh ◽  
D.D. Mara

Two PC-based waste stabilization pond design procedures, based on parameter uncertainty and 10,000-trial Monte Carlo simulations, were developed for a series of anaerobic, facultative and maturation ponds to produce ≤1000 E. coli per 100 ml for both 50% and 95% compliance. One procedure was based on the classical Marais equations and the other on the modern von Sperling equations. For the range of parameter variations selected the classical design procedure required less land area and had a shorter hydraulic retention time than the modern design procedure. For both procedures the design for 90% compliance required substantially more land and a longer retention time than the design for 50% compliance. Regulators and designers should seek a balance between system reliability (as set by the percentage compliance specified or adopted) and system costs, especially (but not only) in developing countries. It is recommended that new waste stabilization pond (WSP) systems be designed for compliance with a given E. coli effluent requirement by the classical procedure and that existing overloaded WSP systems be upgraded using the modern procedure.


2019 ◽  
Vol 85 ◽  
pp. 06013
Author(s):  
Adel Faskol ◽  
Gabriel Racoviţeanu

The most important determinant when recycling of wastewater for agriculture is that related to public health. This paper investigates the removal of Escherichia Coli/coliform in the waste stabilization pond as simulation as assessing of mitigating health risk. A case study in climatic conditions of Libya. As a result of a computer program based waste stabilization pond design based on parameter uncertainty and 10,000-trial Monte Carlo simulations, were developed for a series of anaerobic, facultative and maturation ponds to produce on a 95%-ile value <1000 E. Coli per 100 ml. While a number of influent of E. Coli bacteria was (156.732×106 E. Coli /100ml). Where it decreased was a number of the effluent (10 E. Coli /100ml). Where the efficiency of removal E. Coli bacteria was (99.999 %). And the overall hydraulic retention time it took 89.548 days in the anaerobic pond, facultative pond, first maturation pond and twelve of the subsequent maturation ponds. To satisfy practice 2006 WHO guidelines for the safe use of wastewater in agriculture.


2018 ◽  
Vol 3 (1) ◽  
pp. 7-14
Author(s):  
J. Kenneth, R. S. Suglo

Sewage generated in Ghana is commonly discharged into the environment without any form of treatment to reduce the degree ofcontamination and mitigate potential public health and environmental issues. Although some attempts have been made in someparts of Ghana to utilize the waste stabilization pond (WSP) system to treat domestic sewage, the ponds often fail to achievetheir purpose due to lack of basic maintenance and supervision. To assess the utility of the WSP system for treating sewage,wastewater samples were collected from the raw sewage, anaerobic, facultative and maturation ponds of WSPs at Obuasi inGhana, and analyzed for physicochemical and microbiological contaminants. The results show that the final pond effluent meetsrecommended microbiological and chemical quality guidelines. The waste stabilization pond system demonstrates high removalefficiencies of wastewater contaminants. The biochemical oxygen demand, total suspended solids, nitrate and faecal coliformsreduction efficiencies of 97.3%, 97.6%, 83.3% and 99.94% respectively are highly significant, and compare well with reportedremoval efficiencies in the literature. Additionally, the ponds have high reduction efficiencies for heavy metals and pathogenicmicroorganisms. The wastewater treatment system complies with standard wastewater management practices, and provides auseful method for treating and disposing wastewater in Ghana.


1995 ◽  
Vol 31 (12) ◽  
pp. 285-290 ◽  
Author(s):  
J. I. Oragui ◽  
H. Arridge ◽  
D. D. Mara ◽  
H. W. Pearson ◽  
S. A. Silva

Rotavirus removal in waste stabilization ponds is a relatively slow process: in a series of ten ponds (a 1-d anaerobic pond followed by nine 2-d ponds) its numbers were reduced from 1.4 × 105 per litre to zero, and in an “innovative” series (a 1-day anaerobic pond, 3-d facultative pond, 3.8-d, 3-d and 5-d maturation ponds) from 5.1 × 104 per litre to &lt;5 per litre. Faecal coliforms were better indicators of rotaviruses than was Clostridium perfringens .


1987 ◽  
Vol 32 (3-4) ◽  
Author(s):  
Fermin Rivera ◽  
Patricia Bonilla ◽  
Sandra Soriano ◽  
JoseLuis Reyes ◽  
Fernando Lares ◽  
...  

2014 ◽  
Vol 7 (9) ◽  
pp. 1710-1714
Author(s):  
C.C. Egwuonwu ◽  
V.C. Okafor ◽  
N.C. Ezeanya ◽  
C. Nzediegwu ◽  
A. Suleiman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document