scholarly journals The Contribution of Tau, Amyloid-Beta and Alpha-Synuclein Pathology to Dementia in Lewy Body Disorders

Author(s):  
David J. Irwin ◽  
Howard I. Hurtig
Neuron ◽  
2020 ◽  
Vol 105 (2) ◽  
pp. 260-275.e6 ◽  
Author(s):  
Fares Bassil ◽  
Hannah J. Brown ◽  
Shankar Pattabhiraman ◽  
Joe E. Iwasyk ◽  
Chantal M. Maghames ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Michela Deleidi ◽  
Walter Maetzler

Protein clearance is critical for the maintenance of the integrity of neuronal cells, and there is accumulating evidence that in most—if not all—neurodegenerative disorders, impaired protein clearance fundamentally contributes to functional and structural alterations eventually leading to clinical symptoms. Dysfunction of protein clearance leads to intra- and extraneuronal accumulation of misfolded proteins and aggregates. The pathological hallmark of Lewy body disorders (LBDs) is the abnormal accumulation of misfolded proteins such as alpha-synuclein (Asyn) and amyloid-beta (Abeta) in a specific subset of neurons, which in turn has been related to deficits in protein clearance. In this paper we will highlight common intraneuronal (including autophagy and unfolded protein stress response) and extraneuronal (including interaction of neurons with astrocytes and microglia, phagocytic clearance, autoimmunity, cerebrospinal fluid transport, and transport across the blood-brain barrier) protein clearance mechanisms, which may be altered across the spectrum of LBDs. A better understanding of the pathways underlying protein clearance—in particular of Asyn and Abeta—in LBDs may result in the identification of novel biomarkers for disease onset and progression and of new therapeutic targets.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 759
Author(s):  
Jung-Youn Han ◽  
Chaewon Shin ◽  
Young Pyo Choi

In synucleinopathies such as Parkinson’s disease (PD) and dementia with Lewy body (DLB), pathological alpha-synuclein (α-syn) aggregates are found in the gastrointestinal (GI) tract as well as in the brain. In this study, using real-time quaking-induced conversion (RT-QuIC), we investigated the presence of α-syn seeding activity in the brain and colon tissue of G2-3 transgenic mice expressing human A53T α-syn. Here we show that pathological α-syn aggregates with seeding activity were present in the colon of G2-3 mice as early as 3 months old, which is in the presymptomatic stage prior to the observation of any neurological abnormalities. In contrast, α-syn seeding activity was not detectable in 3 month-old mouse brains and only identified at 6 months of age in one of three mice. In the symptomatic stage of 12 months of age, RT-QuIC seeding activity was consistently detectable in both the brain and colon of G2-3 mice. Our results indicate that the RT-QuIC assay can presymptomatically detect pathological α-syn aggregates in the colon of G2-3 mice several months prior to their detection in brain tissue.


2021 ◽  
Author(s):  
Junghyun Jo ◽  
Lin Yang ◽  
Hoang‐Dai Tran ◽  
Weonjin Yu ◽  
Alfred Xuyang Sun ◽  
...  
Keyword(s):  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Laura Ibanez ◽  
Jorge A. Bahena ◽  
Chengran Yang ◽  
Umber Dube ◽  
Fabiana H. G. Farias ◽  
...  

AbstractAlpha-synuclein is the main protein component of Lewy bodies, the pathological hallmark of Parkinson’s disease. However, genetic modifiers of cerebrospinal fluid (CSF) alpha-synuclein levels remain unknown. The use of CSF levels of amyloid beta1–42, total tau, and phosphorylated tau181 as quantitative traits in genetic studies have provided novel insights into Alzheimer’s disease pathophysiology. A systematic study of the genomic architecture of CSF biomarkers in Parkinson’s disease has not yet been conducted. Here, genome-wide association studies of CSF biomarker levels in a cohort of individuals with Parkinson’s disease and controls (N = 1960) were performed. PD cases exhibited significantly lower CSF biomarker levels compared to controls. A SNP, proxy for APOE ε4, was associated with CSF amyloid beta1–42 levels (effect = − 0.5, p = 9.2 × 10−19). No genome-wide loci associated with CSF alpha-synuclein, total tau, or phosphorylated tau181 levels were identified in PD cohorts. Polygenic risk score constructed using the latest Parkinson’s disease risk meta-analysis were associated with Parkinson’s disease status (p = 0.035) and the genomic architecture of CSF amyloid beta1–42 (R2 = 2.29%; p = 2.5 × 10−11). Individuals with higher polygenic risk scores for PD risk presented with lower CSF amyloid beta1–42 levels (p = 7.3 × 10−04). Two-sample Mendelian Randomization revealed that CSF amyloid beta1–42 plays a role in Parkinson’s disease (p = 1.4 × 10−05) and age at onset (p = 7.6 × 10−06), an effect mainly mediated by variants in the APOE locus. In a subset of PD samples, the APOE ε4 allele was associated with significantly lower levels of CSF amyloid beta1–42 (p = 3.8 × 10−06), higher mean cortical binding potentials (p = 5.8 × 10−08), and higher Braak amyloid beta score (p = 4.4 × 10−04). Together these results from high-throughput and hypothesis-free approaches converge on a genetic link between Parkinson’s disease, CSF amyloid beta1–42, and APOE.


2021 ◽  
Author(s):  
S. R. Stockdale ◽  
L. A. Draper ◽  
S. M. O’Donovan ◽  
W. Barton ◽  
O. O’Sullivan ◽  
...  

AbstractParkinson’s disease (PD) is a chronic neurological disorder associated with the misfolding of alpha-synuclein (α-syn) into Lewy body aggregates within nerve cells that contribute to their neurodegeneration. Recent evidence suggests α-syn aggregation may begin in the gut and travel to the brain along the vagus nerve, with microbes a potential trigger initiating the misfolding of α-syn. However, changes in the gut virome in response to α-syn alterations have not been investigated. In this study, we show longitudinal changes in the faecal virome of rats administered either monomeric or preformed fibrils (PFF) of α-syn directly into their enteric nervous system. Differential changes in rat viromes were observed when comparing monomeric and PFF α-syn. The virome β-diversity changes after α-syn treatment were compounded by the addition of LPS as an adjunct. Changes in the diversity of rat faecal viromes were observed after one month and did not resolve within the study’s five month observational period. Overall, these results suggest that microbiome alterations associated with PD may, partially, be reactive to host α-syn associated changes.


Neurogenetics ◽  
2008 ◽  
Vol 9 (3) ◽  
pp. 163-172 ◽  
Author(s):  
Katrin Beyer ◽  
Montserrat Domingo-Sàbat ◽  
Jordi Humbert ◽  
Cristina Carrato ◽  
Isidro Ferrer ◽  
...  

2013 ◽  
Vol 104 (2) ◽  
pp. 52a
Author(s):  
Maryam Hashemi Shabestari ◽  
Ine M.J. Segers-Nolten ◽  
Nico J. Meeuwenoord ◽  
Dymitri V. Filippov ◽  
Mireille M.A.E. Claessens ◽  
...  

2021 ◽  
Author(s):  
Xiaobo Mao ◽  
Hao Gu ◽  
Donghoon Kim ◽  
Yasuyoshi Kimura ◽  
Ning Wang ◽  
...  

Pathologic alpha-synuclein (alpha-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid beta precursor-like protein 1 (Aplp1) forms a complex with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic alpha-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by alpha-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of alpha-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by alpha-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for alpha-syn PFF induced pathology advances our understanding of the molecular mechanism of cell-to-cell transmission of pathologic alpha-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson disease and related alpha-synucleinopathies.


Sign in / Sign up

Export Citation Format

Share Document