scholarly journals Preclinical Detection of Alpha-Synuclein Seeding Activity in the Colon of a Transgenic Mouse Model of Synucleinopathy by RT-QuIC

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 759
Author(s):  
Jung-Youn Han ◽  
Chaewon Shin ◽  
Young Pyo Choi

In synucleinopathies such as Parkinson’s disease (PD) and dementia with Lewy body (DLB), pathological alpha-synuclein (α-syn) aggregates are found in the gastrointestinal (GI) tract as well as in the brain. In this study, using real-time quaking-induced conversion (RT-QuIC), we investigated the presence of α-syn seeding activity in the brain and colon tissue of G2-3 transgenic mice expressing human A53T α-syn. Here we show that pathological α-syn aggregates with seeding activity were present in the colon of G2-3 mice as early as 3 months old, which is in the presymptomatic stage prior to the observation of any neurological abnormalities. In contrast, α-syn seeding activity was not detectable in 3 month-old mouse brains and only identified at 6 months of age in one of three mice. In the symptomatic stage of 12 months of age, RT-QuIC seeding activity was consistently detectable in both the brain and colon of G2-3 mice. Our results indicate that the RT-QuIC assay can presymptomatically detect pathological α-syn aggregates in the colon of G2-3 mice several months prior to their detection in brain tissue.

2010 ◽  
Vol 38 (4) ◽  
pp. 1001-1005 ◽  
Author(s):  
Kunie Ando ◽  
Karelle Leroy ◽  
Céline Heraud ◽  
Anna Kabova ◽  
Zehra Yilmaz ◽  
...  

We have reported previously a tau transgenic mouse model (Tg30tau) overexpressing human 4R1N double-mutant tau (P301S and G272V) and that develops AD (Alzheimer's disease)-like NFTs (neurofibrillary tangles) in an age-dependent manner. Since murine tau might interfere with the toxic effects of human mutant tau, we set out to analyse the phenotype of our Tg30tau model in the absence of endogenous murine tau with the aim to reproduce more faithfully a model of human tauopathy. By crossing the Tg30tau line with TauKO (tau-knockout) mice, we have obtained a new mouse line called Tg30×TauKO that expresses only exogenous human double-mutant 4R1N tau. Whereas Tg30×TauKO mice express fewer tau proteins compared with Tg30tau, they exhibit augmented sarkosyl-insoluble tau in the brain and an increased number of Gallyas-positive NFTs in the hippocampus. Taken together, exclusion of murine tau causes accelerated tau aggregation during aging of this mutant tau transgenic model.


2012 ◽  
Vol 61 (3) ◽  
pp. 347-355 ◽  
Author(s):  
Masaoki Takano ◽  
Kouji Maekura ◽  
Mieko Otani ◽  
Keiji Sano ◽  
Tooru Nakamura-Hirota ◽  
...  

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Hideo Hagihara ◽  
Masayo Fujita ◽  
Juzoh Umemori ◽  
Makoto Hashimoto ◽  
Tsuyoshi Miyakawa

2021 ◽  
Author(s):  
S. R. Stockdale ◽  
L. A. Draper ◽  
S. M. O’Donovan ◽  
W. Barton ◽  
O. O’Sullivan ◽  
...  

AbstractParkinson’s disease (PD) is a chronic neurological disorder associated with the misfolding of alpha-synuclein (α-syn) into Lewy body aggregates within nerve cells that contribute to their neurodegeneration. Recent evidence suggests α-syn aggregation may begin in the gut and travel to the brain along the vagus nerve, with microbes a potential trigger initiating the misfolding of α-syn. However, changes in the gut virome in response to α-syn alterations have not been investigated. In this study, we show longitudinal changes in the faecal virome of rats administered either monomeric or preformed fibrils (PFF) of α-syn directly into their enteric nervous system. Differential changes in rat viromes were observed when comparing monomeric and PFF α-syn. The virome β-diversity changes after α-syn treatment were compounded by the addition of LPS as an adjunct. Changes in the diversity of rat faecal viromes were observed after one month and did not resolve within the study’s five month observational period. Overall, these results suggest that microbiome alterations associated with PD may, partially, be reactive to host α-syn associated changes.


2014 ◽  
Vol 4 (4) ◽  
pp. 232-238 ◽  
Author(s):  
Selvaraju Subash ◽  
Musthafa Mohamed Essa ◽  
Abdullah Al-Asmi ◽  
Samir Al-Adawi ◽  
Ragini Vaishnav ◽  
...  

2018 ◽  
Vol 2 (2) ◽  
pp. 241-258 ◽  
Author(s):  
Shelli R. Kesler ◽  
Paul Acton ◽  
Vikram Rao ◽  
William J. Ray

Neurodegeneration in Alzheimer’s disease (AD) is associated with amyloid-beta peptide accumulation into insoluble amyloid plaques. The five-familial AD (5XFAD) transgenic mouse model exhibits accelerated amyloid-beta deposition, neuronal dysfunction, and cognitive impairment. We aimed to determine whether connectome properties of these mice parallel those observed in patients with AD. We obtained diffusion tensor imaging and resting-state functional magnetic resonance imaging data for four transgenic and four nontransgenic male mice. We constructed both structural and functional connectomes and measured their topological properties by applying graph theoretical analysis. We compared connectome properties between groups using both binarized and weighted networks. Transgenic mice showed higher characteristic path length in weighted structural connectomes and functional connectomes at minimum density. Normalized clustering and modularity were lower in transgenic mice across the upper densities of the structural connectome. Transgenic mice also showed lower small-worldness index in higher structural connectome densities and in weighted structural networks. Hyper-correlation of structural and functional connectivity was observed in transgenic mice compared with nontransgenic controls. These preliminary findings suggest that 5XFAD mouse connectomes may provide useful models for investigating the molecular mechanisms of AD pathogenesis and testing the effectiveness of potential treatments.


Sign in / Sign up

Export Citation Format

Share Document