Russell’s Viper Venom Purified Toxin Drct-II Inhibits the Cell Proliferation and Induces G1 Cell Cycle Arrest in Human Leukemic Cancer Cells

2015 ◽  
Vol 05 (03) ◽  
Author(s):  
Gomes A Biswas AK
Pharmacology ◽  
2019 ◽  
Vol 103 (5-6) ◽  
pp. 250-256 ◽  
Author(s):  
Eri Usugi ◽  
Kenichiro Ishii ◽  
Yoshifumi Hirokawa ◽  
Kazuki Kanayama ◽  
Chise Matsuda ◽  
...  

Background: Pirfenidone (PFD), which is an antifibrotic agent used for treatment of idiopathic pulmonary fibrosis, induces G0/G1 cell cycle arrest in fibroblasts. We hypothesized that PFD-induced G0/G1 cell cycle arrest might be achieved in other types of cells, including cancer cells. Here we investigated the effects of PFD on the proliferation of pancreatic cancer cells (PCCs) in vitro. Method: Human skin fibroblasts ASF-4-1 cells and human prostate stromal cells (PrSC) were used as fibroblasts. PANC-1, MIA PaCa-2, and BxPC-3 cells were used as human PCCs. Cell cycle and apoptosis were analyzed using flow cytometer. Results: First, we confirmed that PFD suppressed cell proliferation of ASF-4-1 cells and PrSC and induced G0/G1 cell cycle arrest. Under these experimental conditions, PFD also suppressed cell proliferation and induced G0/G1 cell cycle arrest in all PCCs. In PFD-treated PCCs, expression of p21 was increased but that of CDK2 was not clearly decreased. Of note, PFD did not induce significant apoptosis among PCCs. Conclusions: These results demonstrated that the antifibrotic agent PFD might have antiproliferative effects on PCCs by inducing G0/G1 cell cycle arrest. This suggests that PFD may target not only fibroblasts but also PCCs in the tumor microenvironment of pancreatic cancer.


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44022-44030 ◽  
Author(s):  
L. M. Saeed ◽  
M. Mahmood ◽  
Y. Xu ◽  
Z. A. Nima ◽  
G. K. Kannarpady ◽  
...  

Graphene was used to deliver gambogic acid to cervical, ovarian, and prostate cancer cells and the complex was shown to be more effective at inhibiting cell proliferation, initiating cell cycle arrest and inducing apoptosis compared to the drug alone.


2021 ◽  
Vol 19 (1) ◽  
pp. 119-127
Author(s):  
Ibrahim O. Barnawi ◽  
Fahd A. Nasr ◽  
Omar M. Noman ◽  
Ali S. Alqahtani ◽  
Mohammed Al-zharani ◽  
...  

Abstract Different phytochemicals from various plant species exhibit promising medicinal properties against cancer. Juniperus phoenicea is a plant species that has been found to present medicinal properties. Herein, crude extract and fractions of J. phoenicea were examined to determine its anticancer properties against several cancer cells. The active fraction was chosen to assess its activity on cell cycle progression and apoptosis induction by annexin and propidium iodide (PI) biomarkers. Further, phytochemical screening for possible contents of active fraction using gas chromatography–mass spectrometry (GC-MS) analysis was conducted. It was demonstrated that cell proliferation was suppressed, and the MCF-7 cell line was the most sensitive to J. phoenicea chloroform fraction (JPCF), with the IC50 values of 24.5 μg/mL. The anti-proliferation activity of JPCF in MCF-7 cells was linked to the aggregation of cells in the G1 phase, increases in early and late apoptosis as well as necrotic cell death. Contents analysis of JPCF using GC-MS analysis identified 3-methyl-5-(2′,6′,6′-trimethylcyclohex-1′-enyl)-1-penten-3-ol (16.5%), methyl 8-oxooctanoate (15.61%), cubenol (13.48%), and 7-oxabicyclo [2.2.1] heptane (12.14%) as major constituents. Our present study provides clear evidence that J. phoenicea can inhibit cell proliferation, trigger cell cycle arrest, and induce apoptosis in tested cancer cells.


2020 ◽  
Vol 39 (12) ◽  
pp. 1681-1689
Author(s):  
S Yin ◽  
H Yang ◽  
X Zhao ◽  
S Wei ◽  
Y Tao ◽  
...  

Artesunate (ARS) has been shown to be highly effective against chloroquine-resistant malaria. In vitro studies reported that ARS has anticancer effects; however, its detrimental action on cancer cells may also play a role in its toxicity toward normal cells and its potential toxicity has not been sufficiently researched. In this study, we investigated the possible cytotoxic effects using normal BRL-3A and AML12 liver cells. The results showed that ARS dose-dependently inhibited cell proliferation and arrested the G0/G1 phase cell cycle in both BRL-3A and AML12 liver cells. Western blotting demonstrated that ARS induced a significant downregulation of cyclin-dependent kinase-2 (CDK2), CDK4, cyclin D1, and cyclin E1 in various levels and then caused apoptosis when the Bcl-2/Bax ratio decreased. Conversely, the levels of intracellular reactive oxygen species (ROS) were increased. The ROS scavenger N-acetylcysteine can significantly inhibit cell cycle arrest and apoptosis induced by ARS. Thus, the data confirmed that ARS exposure impairs normal liver cell proliferation by inducing G0/G1 cell cycle arrest and apoptosis, and this detrimental action may be associated with intracellular ROS accumulation. Collectively, the possible side effects of ARS on healthy normal cells cannot be neglected when developing therapies.


Sign in / Sign up

Export Citation Format

Share Document