scholarly journals Influence of Nonlinearity of Soil-Pile Interface on the Seismic Interaction of Nonlinear Soil-Piles-Bridge System

2018 ◽  
Vol 08 (04) ◽  
Author(s):  
Mohanad Talal Alfach
Keyword(s):  
Author(s):  
Arshia Taeb ◽  
Phillip S.K. Ooi

When subjected to ambient daily temperature fluctuations, a 109.5 ft-long geosynthetic reinforced soil integrated bridge system (GRS-IBS) was observed to undergo cyclic straining of the superstructure. The upper and lower reaches of the superstructure experienced the highest and lowest strain fluctuation, respectively. These non-uniform strains impose not only axial loading of the superstructure but also bending. Pure axial loading in a horizontal superstructure will cause the footings to slide. However, bending in the superstructure will cause the footings to rotate thereby inducing cyclic fluctuations of the vertical pressure beneath the footing and also lateral pressure behind the end walls. Measured vertical footing pressure closest to the stream experienced the greatest daily pressure fluctuation (≈ 2,500–3,000 psf), while that nearest the end wall experienced the least. The toe pressure fluctuations seem rather large. That these large vertical pressure fluctuations are observed in a tropical climate like Hawaii when no other GRS-IBS in temperate regions has reported the same (or perhaps higher fluctuation) is indeed surprising. The larger these pressures are, the greater the likelihood of inducing cyclic-induced deformations of the GRS abutment. A finite element analysis of the same GRS-IBS was performed by applying an equivalent temperature and gradient to the superstructure over the coldest and hottest periods of a day to see if the field measured values of pressures are reasonable and verifiable, which indeed they were. This methodology is novel in the sense that the effects of axial load and bending of the superstructure are simulated using measured strains rather than measured temperatures.


Author(s):  
Xiaoduan Sun ◽  
Zhongjie Zhang ◽  
Robert Wang ◽  
Xuyong Wang ◽  
Jason Chapman

2021 ◽  
Author(s):  
XiangWen Xiong ◽  
Mingzi Wu

<p>This paper presents a novel ecological &amp; energized modules (EEMs) system for transportation and bridge systems. It has a general interest in almost all human living &amp; ecological systems, civil engineering, and infrastructure. As an underlying and fundamental system of zero energy, zero- water-consumption, and zero-carbon with a 100% greening rate and 100% clean energy, high- quality air, and powerful carbon capture system with significant positive spillover for global carbon removal and climate challenges, etc., the EEMs bridge system is easy, fast, efficient, and zero- dependence on the large complex equipment during the construction. It is applied to a wide variety of bridge systems, such as road bridges, footbridges, flyovers, and overpasses. It’s pollution-free, safe, noiseless, and can be used soon after paving, repairing, and re-laying. The EEMs bridge system has unique superiority in ecosystem integrity and connectivity, resulting in available consequences for global biodiversity, local species interactions, ecosystem integrity and connectivity.</p>


Sign in / Sign up

Export Citation Format

Share Document