scholarly journals Carrier-phase GNSS Attitude Determination and Control for Small Unmanned Aerial Vehicle Applications

Author(s):  
Roberto Sabatini Anish Kaharkar
Author(s):  
Hongbo Xin ◽  
Yujie Wang ◽  
Xianzhong Gao ◽  
Qingyang Chen ◽  
Bingjie Zhu ◽  
...  

The tail-sitter unmanned aerial vehicles have the advantages of multi-rotors and fixed-wing aircrafts, such as vertical takeoff and landing, long endurance and high-speed cruise. These make the tail-sitter unmanned aerial vehicle capable for special tasks in complex environments. In this article, we present the modeling and the control system design for a quadrotor tail-sitter unmanned aerial vehicle whose main structure consists of a traditional quadrotor with four wings fixed on the four rotor arms. The key point of the control system is the transition process between hover flight mode and level flight mode. However, the normal Euler angle representation cannot tackle both of the hover and level flight modes because of the singularity when pitch angle tends to [Formula: see text]. The dual-Euler method using two Euler-angle representations in two body-fixed coordinate frames is presented to couple with this problem, which gives continuous attitude representation throughout the whole flight envelope. The control system is divided into hover and level controllers to adapt to the two different flight modes. The nonlinear dynamic inverse method is employed to realize fuselage rotation and attitude stabilization. In guidance control, the vector field method is used in level flight guidance logic, and the quadrotor guidance method is used in hover flight mode. The framework of the whole system is established by MATLAB and Simulink, and the effectiveness of the guidance and control algorithms are verified by simulation. Finally, the flight test of the prototype shows the feasibility of the whole system.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yunping Liu ◽  
Xijie Huang ◽  
Yonghong Zhang ◽  
Yukang Zhou

This paper focuses on the dynamic stability analysis of a manipulator mounted on a quadrotor unmanned aerial vehicle, namely, a manipulating unmanned aerial vehicle (MUAV). Manipulator movements and environments interaction will extremely affect the dynamic stability of the MUAV system. So the dynamic stability analysis of the MUAV system is of paramount importance for safety and satisfactory performance. However, the applications of Lyapunov’s stability theory to the MUAV system have been extremely limited, due to the lack of a constructive method available for deriving a Lyapunov function. Thus, Lyapunov exponent method and impedance control are introduced, and the Lyapunov exponent method can establish the quantitative relationships between the manipulator movements and the dynamics stability, while impedance control can reduce the impact of environmental interaction on system stability. Numerical simulation results have demonstrated the effectiveness of the proposed method.


2010 ◽  
pp. 77-93 ◽  
Author(s):  
Kenzo Nonami ◽  
Farid Kendoul ◽  
Satoshi Suzuki ◽  
Wei Wang ◽  
Daisuke Nakazawa

2021 ◽  
pp. 25-46
Author(s):  
Ayad Al-Mahturi ◽  
Fendy Santoso ◽  
Matthew A. Garratt ◽  
Sreenatha G. Anavatti

2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877993 ◽  
Author(s):  
Rong Wang ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Yuxuan Cao

In high-altitude, long-endurance unmanned aerial vehicles, a celestial attitude determination system is used to enhance the inertial navigation system (INS)/global positioning system (GPS) to achieve the required attitude performance. The traditional federal filter is not applicable for INS/GPS/celestial attitude determination system information fusion because it does not consider the mutually coupled relationship between the horizontal reference error in the celestial attitude determination system and the navigation error; this limitation results in reduced navigation accuracy. This article proposes a novel stepwise fusion algorithm with dual correction for multi-sensor navigation. Considering the horizontal reference error, the celestial attitude determination system measurement model is constructed and the issues involved in applying the federal filter are discussed. Then, preliminary error estimation and horizontal reference compensation are added to the navigation architecture. In addition, a sequential update strategy is derived to estimate the attitude error with the compensated celestial attitude determination system based on the preliminary estimation. A stepwise correction filtering algorithm with interactive preliminary and sequential updates that can effectively fuse celestial attitude determination system measurements with the INS/GPS is constructed. High-altitude, long-endurance unmanned aerial vehicle navigation in a remote sensing task is simulated to verify the performance of the proposed method. The simulation results demonstrate that the horizontal reference error is effectively compensated, and the attitude accuracy is significantly improved after stepwise error estimation and correction. The proposed method also provides a novel multi-sensor integrated navigation architecture with mutually coupled errors; this architecture is beneficial in unmanned aerial vehicle navigation applications.


2017 ◽  
Vol 22 (3) ◽  
pp. 1327-1336 ◽  
Author(s):  
Hyunyong Lee ◽  
Seonhye Han ◽  
Hyoju Lee ◽  
Jaehyeok Jeon ◽  
Choonghan Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document