Microstructural and Mechanical Properties of Cu-based Alloy Manufactured by Self-propagating High-temperature Synthesis Method

2016 ◽  
Vol 05 (01) ◽  
Author(s):  
Amiour Y ◽  
Zemmour K ◽  
Vrel D
2017 ◽  
Vol 33 (3-4) ◽  
pp. 121
Author(s):  
Y. Amiour ◽  
K. Zemmour ◽  
D. Vrel

<p>Microstructure and properties of Cu<sub>1-x</sub>Zn<sub>1-y</sub>Al<sub>1-z</sub> ranging through (0.29 &lt;X&lt; 0.30; 0.74 &lt;Y&lt; 0.75; and 0.83 &lt;Z&lt; 0.96) alloys obtained by the Self- propagating High-temperature Synthesis (SHS) were examined. The microstructural and mechanical properties were examined, respectively by X-ray diffraction, tensile tests and Brinell hardness. The obtained results showed that the modification of composition lead to the formation of new phases. Therefore, this microstructure affects strongly the mechanical properties of the selected samples. In this study, we will also highlight the SHS technology and prove that it can alternate the conventional methods regarding the development of a Shape Memory Alloys (SMAs).</p><p> </p>


2003 ◽  
Vol 18 (8) ◽  
pp. 1842-1848 ◽  
Author(s):  
F. Maglia ◽  
C. Milanese ◽  
U. Anselmi-Tamburini ◽  
Z. A. Munir

Microalloying of MoSi2 to form Mo(1−x)MexSi2 (Me = Nb or V) was investigated by the self-propagating high-temperature synthesis method. With alloying element contents up to 5 at.%, a homogeneous C11b solid solution was obtained. For higher contents of alloying elements, the product contained both the C11b and the hexagonal C40 phases. The relative amount of the C40 phase increases with an increase in the content of alloying metals in the starting mixture. The alloying element content in the hexagonal C40 Mo(1−x)MexSi2 phase was nearly constant at a level of about 12 at.% for all starting compositions. In contrast, the content of the alloying elements in the tetragonal phase is considerably lower (around 4 at.%) and increases slightly as the Me content in the starting mixture is increased.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhennan Huang ◽  
Yonggang Yao ◽  
Zhenqian Pang ◽  
Yifei Yuan ◽  
Tangyuan Li ◽  
...  

AbstractDirect formation of ultra-small nanoparticles on carbon supports by rapid high temperature synthesis method offers new opportunities for scalable nanomanufacturing and the synthesis of stable multi-elemental nanoparticles. However, the underlying mechanisms affecting the dispersion and stability of nanoparticles on the supports during high temperature processing remain enigmatic. In this work, we report the observation of metallic nanoparticles formation and stabilization on carbon supports through in situ Joule heating method. We find that the formation of metallic nanoparticles is associated with the simultaneous phase transition of amorphous carbon to a highly defective turbostratic graphite (T-graphite). Molecular dynamic (MD) simulations suggest that the defective T-graphite provide numerous nucleation sites for the nanoparticles to form. Furthermore, the nanoparticles partially intercalate and take root on edge planes, leading to high binding energy on support. This interaction between nanoparticles and T-graphite substrate strengthens the anchoring and provides excellent thermal stability to the nanoparticles. These findings provide mechanistic understanding of rapid high temperature synthesis of metal nanoparticles on carbon supports and the origin of their stability.


2014 ◽  
Vol 900 ◽  
pp. 141-145 ◽  
Author(s):  
Can Feng Fang ◽  
Guang Xu Liu ◽  
Ling Gang Meng ◽  
Xing Guo Zhang

The effects of in-situ TiB2 particle fabricated from Al-Ti-B system via the self-propagating high-temperature synthesis (SHS) reaction technology on microstructure and mechanical properties of Mg-Sn-Zn-Al alloy were investigated. The results indicate that the size of the Mg2Sn and α-Mg+Mg32(Al,Zn)49 phase becomes coarser with the increasing content of Al-Ti-B preform, meanwhile the amount of eutectic α-Mg+Mg32(Al,Zn)49 phase increases too. The addition of Al-Ti-B is favorable toward promoting the strength of composites, but deteriorates elongation. The resulting as-extruded composite material with 4 wt.% Al-Ti-B preform exhibits good overall mechanical properties with an ultimate tensile strength of 291 MPa and an elongation over 2 %.


2009 ◽  
Vol 467 (1-2) ◽  
pp. 514-523 ◽  
Author(s):  
Chyi-Ching Hwang ◽  
Cheng-Shiung Lin ◽  
Gaw-Pying Wang ◽  
Cheng-Hsiung Peng ◽  
Shyan-Lung Chung

Sign in / Sign up

Export Citation Format

Share Document