Partitioned Modelling for Nonlinear Dynamic Analysis of Reinforced Concrete Buildings for Earthquake Loading

Author(s):  
B.A. Izzuddin ◽  
L. Macorini ◽  
G. Rinaldin
2020 ◽  
Vol 10 (12) ◽  
pp. 4075
Author(s):  
Seong-Ha Jeon ◽  
Ji-Hun Park

The seismic performance of ordinary reinforced concrete shear walls, that are commonly used in high-rise residential buildings in Korea (h < 60 m), but are prohibited for tall buildings (h ≥ 60 m), is evaluated in this research project within the framework of collapse probability. Three bidimensional analytical models comprised of both coupled and uncoupled shear walls exceeding 60 m in height were designed using nonlinear dynamic analysis in accordance with Korean performance-based seismic design guidelines. Seismic design based on nonlinear dynamic analysis was performed using different shear force amplification factors in order to determine an appropriate factor. Then, an incremental dynamic analysis was performed to evaluate collapse fragility in accordance with the (Federal Emergency Management Agency) FEMA P695 procedure. Four engineering demand parameters including inter-story drift, plastic hinge rotation angle, concrete compressive strain and shear force were introduced to investigate the collapse probability of the designed analytical models. For all analytical models, flexural failure was the primary failure mode but shear force amplification factors played an important role in order to meet the requirement on collapse probability. High-rise ordinary reinforced concrete shear walls designed using seven pairs of ground motion components and a shear force amplification factor ≥ 1.2 were adequate to satisfy the criteria on collapse probability and the collapse margin ratio prescribed in FEMA P695.


2015 ◽  
Vol 32 (6) ◽  
pp. 1661-1690 ◽  
Author(s):  
Sergiu Andrei Baetu ◽  
Alex H Barbat ◽  
Ioan Petru Ciongradi ◽  
Georgeta Baetu

Purpose – The purpose of this paper is to investigate a reinforced concrete multi-storey building with dissipative structural walls. These walls can improve the behaviour of a tall multi-storey building. The authors’ main objective is to evaluate the damage of a building with dissipative walls in comparison with that of a building with solid walls. Design/methodology/approach – In this paper, a comparative nonlinear dynamic analysis between a building with slit walls and then the same building with solid walls is performed by means of SAP2000 software and using a layer model. The solution to increase the seismic performance of a building with structural walls is to create slit zones with short connections in to the walls. The short connections are introduced as a link element with multi-linear pivot hysteretic plasticity behaviour. The hysteretic rules and parameters of these short connections were proposed by the authors and used in this analysis. In this study, the authors propose to evaluate the damage of a building with reinforced concrete slit walls with short connections using seismic analysis. Findings – Using the computational model created by the authors for the slit wall, a seismic analysis of a multi-storey building with slit walls was done. From the results obtained, the advantages of the proposed model are observed. Originality/value – Using a simple computational model, created by the authors, that consume low processing resources and reduces processing time, a nonlinear dynamic analysis on high-rise buildings was done. Unlike other studies on slit walls with short connections, which are focused mostly on the nonlinear dynamic behaviour of the short connections, in this paper the authors take into consideration the whole structural system, wall, connections and frames.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 524
Author(s):  
Joo-Ki Son ◽  
Chang-Hwan Lee

Various seismic analysis methods are being used to predict the response of structures to earthquakes. Although nonlinear dynamic analysis (NDA) is considered an ideal method to represent the most realistic behavior of a structure among these various methods, correct results can be derived only when the analysis model is carefully developed by a knowledgeable person. It is particularly important to properly implement the behavior characteristics depending on the reversed cyclic load in the NDA of a building made of reinforced concrete (RC) moment frames. This study evaluated the hysteresis model suitable for NDA of existing RC moment frames, and 45 analysis models were reviewed, in which the pivot, concrete, and Takeda hysteresis models were applied differently to beams and columns. The pivot model was evaluated as the most reliable hysteresis model for each structural member by comparing and analyzing not only the responses of the entire frame but also the responses of column and beam members focusing on energy dissipation. However, this model can have practical limitations in that the parameters associated with the reinforcement detailing and applied loads need to be defined in detail. The analysis model applying Takeda to the beam, which predicted the average response at a reliable level compared to the reference model, was identified as a practical alternative when it is difficult to apply the pivot model to all frame members.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1438-1442
Author(s):  
Dong An ◽  
Tie Jun Qu

The selection of input ground motion for seismic analysis of the structure is a complicated task, especially when nonlinear dynamic analysis is utilized. A decision has to be made regarding the intensity measure better to represent the potential damage of the ground motion. This paper presents a lot of analysis to deal with the problem. A set of nonlinear dynamic analyses were conducted on reinforced concrete buildings widely present in China. Input ground motions contain uncertainty and variability comes from both natural recordings and synthetic data. First, a set of natural recordings is considered. Second, two ground motion modification schemes are used in this study: magnitude scaling and spectrum matching. Third, a set of ground motion is synthesized. The peak value of displacement has been selected as the response parameter better able to represent the structural damage level. Nonlinear dynamic analyses of reinforced concrete buildings simulated by OpenSEES are carried out to evaluate the correlation coefficients of displacement response and the chosen ground motion parameters. Findings from the investigation indicate that the Housner intensity is the more effective intensity measure for selecting the seismic input. The synthesized ground motion fit with code spectrum shows good performance as a design input motion. Considering ground motion modification, spectrum matching is generally more stable in response prediction than scaling.


Sign in / Sign up

Export Citation Format

Share Document