Numerical Simulation of Fluid-Structure Interaction for Wind-Induced Dynamic Response of a PVC Coated Fabric Sheet on a Renewable Advertisement Billboard

Author(s):  
Z.H. Liu ◽  
Q.L. Zhang ◽  
Y. Zhou
2012 ◽  
Vol 457-458 ◽  
pp. 1062-1065
Author(s):  
Xiang Yang Zhou ◽  
Qi Lin Zhang

Comprehensive studies on effect of fluid-structure interaction and dynamic response for tension structure were conducted by the numerical simulation. An iterative coupling approach for time-dependent fluid-structure interactions is applied to tension membranous structures with large displacements. The coupling method connects a flow-condition-based interpolation element for incompressible fluids with a finite element for geometrically nonlinear problems. A membranous roof with saddle shape exposed to fluctuating wind field at atmosphere boundary layer was investigated for the coupling algorithm. The dynamic response and the fluctuating pressure on member structure were calculated according to the coupling configuration.


2010 ◽  
Vol 29-32 ◽  
pp. 1458-1463 ◽  
Author(s):  
Jin Yun Liu ◽  
Jian Yun Chen

Three basic types of similar relationship between the prototype and the model for dynamic structural model test and dynamic destructive model test were proposed in corresponding literatures. At the time the situation where various similar relationships are applicable and the technique to ensure similarity for the different goal was discussed. Here the numerical simulation of model test of water-conveyance tunnel concerning fluid-structure interaction in soft soil is studied. Based on economy and practicability of selective material for model test, the similar relationship and the technique are proposed, which are validated through the example. The results of numerical simulation show: under the specific conditions, data of the model test can completely transfer to those of the prototype by use of this type of similar skill, and get more useful information. Some new ideas are introduced to keep the similarity of the hydro-structure structures.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Yulin Deng ◽  
Qingkang Guo ◽  
Lueqin Xu

This paper presents an experimental program performed to study the effect of fluid-structure interaction on the modal dynamic response of water-surrounded slender bridge pier with pile foundation. A reduced scale slender bridge pier specimen is built and tested through forced vibration method. The vibration periods of the first four lateral modes, including the first two modes along x-axis and the first two modes along y-axis, are measured based on the specimen submerged by 16 levels of water and designated with 4 levels of tip mass. Three-dimensional (3D) finite-element models are established for the tested water-pier system and analyzed under various combined cases of water level and tip mass. Percentage increases of vibration periods with respect to dry vibration periods (i.e., vibration periods of the specimen without water) are determined as a function of water level and tip mass to evaluate the effect of fluid-structure interaction. The numerical results are successfully validated against the recorded test data. Based on the validated models, the modal hydrodynamic pressures are calculated to characterize the 3D distribution of hydrodynamic loads on the pier systems. The research provides a better illumination into the effect of fluid-structure interaction on the modal dynamic response of deepwater bridges.


Sign in / Sign up

Export Citation Format

Share Document