Thermal Buckling Analysis of Thick Functionally Graded Circular Plates Using Unconstrained Third-Order Shear Deformation Plate Theory

Author(s):  
A.R. Saidi ◽  
S. Sahraee
2017 ◽  
Vol 119 ◽  
pp. 687-699 ◽  
Author(s):  
Thom Van Do ◽  
Dinh Kien Nguyen ◽  
Nguyen Dinh Duc ◽  
Duc Hong Doan ◽  
Tinh Quoc Bui

2016 ◽  
Vol 20 (8) ◽  
pp. 907-945 ◽  
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga

The buckling and postbuckling behaviors of eccentrically stiffened sandwich plates on elastic foundations subjected to in-plane compressive loads, thermal loads, or thermomechanical loads are presented analytically by using the Reddy’s third-order shear deformation plate theory with von Karman geometrical nonlinearity. Four cases of general Sigmoid and power laws are considered. The material properties of the facesheets, the core layer, and stiffeners are assumed to be temperature-dependent. Theoretical formulations based on the smeared stiffeners technique and third-order shear deformation plate theory are derived. The expressions of thermal parameters are found in the analytical form. Applying the Galerkin method, the expressions for determination of the critical buckling load and analysis of the postbuckling mechanical and thermal load–deflection curves are obtained. The iterative algorithm is presented for the case of temperature-dependent plate material properties. In addition, the influences of thermal element, functionally graded material stiffeners, the facesheet thickness to total thickness ratio, initial imperfection, and foundations are clarified in detail.


Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Dang Thuy Dong ◽  
Nguyen Thoi Trung ◽  
Nguyen Van Tue

In this paper, an analytical approach for nonlinear buckling and post-buckling behavior of stiffened porous functionally graded plate rested on Pasternak's elastic foundation under mechanical load in thermal environment is presented. The orthogonal and/or oblique stiffeners are attached to the surface of plate and are included in the calculation by improving the Lekhnitskii's smeared stiffener technique in the framework of higher-order shear deformation plate theory. The complex equilibrium and stability equations are established based on the Reddy's higher-order shear deformation plate theory and taken into account the geometrical nonlinearity of von Kármán. The solution forms of displacements satisfying the different boundary conditions are chosen, the stress function method and the Galerkin procedure are used to solve the problem. The good agreements of the present analytical solution are validated by making the comparisons of the present results with other results. In addition, the effects of porosity distribution, stiffener, volume fraction index, thermal environment, elastic foundation… on the critical buckling load and post-buckling response of porous functionally graded material plates are numerically investigated.


Sign in / Sign up

Export Citation Format

Share Document