Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory

2017 ◽  
Vol 119 ◽  
pp. 687-699 ◽  
Author(s):  
Thom Van Do ◽  
Dinh Kien Nguyen ◽  
Nguyen Dinh Duc ◽  
Duc Hong Doan ◽  
Tinh Quoc Bui
Author(s):  
B. Samsam Shariat ◽  
M. R. Eslami ◽  
A. Bagri

Thermal buckling analysis of rectangular functionally graded plates with initial geometric imperfections is presented in this paper. It is assumed that the non-homogeneous mechanical properties vary linearly through the thickness of the plate. The plate is assumed to be under various types of thermal loadings, such as the uniform temperature rise and nonlinear temperature gradient through the thickness. A double-sine function for the geometric imperfection along the x and y-directions is considered. The equilibrium equations are derived using the third order shear deformation plate theory. Using a suitable method, equilibrium equations are reduced from 5 to 2 equations. The corresponding stability equations are established. Using these equations accompanied by the compatibility equation yield to the buckling loads in a closed form solution for each loading case. The results are compared with the known data in the literature.


2016 ◽  
Vol 20 (8) ◽  
pp. 907-945 ◽  
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga

The buckling and postbuckling behaviors of eccentrically stiffened sandwich plates on elastic foundations subjected to in-plane compressive loads, thermal loads, or thermomechanical loads are presented analytically by using the Reddy’s third-order shear deformation plate theory with von Karman geometrical nonlinearity. Four cases of general Sigmoid and power laws are considered. The material properties of the facesheets, the core layer, and stiffeners are assumed to be temperature-dependent. Theoretical formulations based on the smeared stiffeners technique and third-order shear deformation plate theory are derived. The expressions of thermal parameters are found in the analytical form. Applying the Galerkin method, the expressions for determination of the critical buckling load and analysis of the postbuckling mechanical and thermal load–deflection curves are obtained. The iterative algorithm is presented for the case of temperature-dependent plate material properties. In addition, the influences of thermal element, functionally graded material stiffeners, the facesheet thickness to total thickness ratio, initial imperfection, and foundations are clarified in detail.


Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Dang Thuy Dong ◽  
Nguyen Thoi Trung ◽  
Nguyen Van Tue

In this paper, an analytical approach for nonlinear buckling and post-buckling behavior of stiffened porous functionally graded plate rested on Pasternak's elastic foundation under mechanical load in thermal environment is presented. The orthogonal and/or oblique stiffeners are attached to the surface of plate and are included in the calculation by improving the Lekhnitskii's smeared stiffener technique in the framework of higher-order shear deformation plate theory. The complex equilibrium and stability equations are established based on the Reddy's higher-order shear deformation plate theory and taken into account the geometrical nonlinearity of von Kármán. The solution forms of displacements satisfying the different boundary conditions are chosen, the stress function method and the Galerkin procedure are used to solve the problem. The good agreements of the present analytical solution are validated by making the comparisons of the present results with other results. In addition, the effects of porosity distribution, stiffener, volume fraction index, thermal environment, elastic foundation… on the critical buckling load and post-buckling response of porous functionally graded material plates are numerically investigated.


2014 ◽  
Vol 11 (04) ◽  
pp. 1350062 ◽  
Author(s):  
MOHAMED ATIF BENATTA ◽  
ABDELHAKIM KACI ◽  
ABDELOUAHED TOUNSI ◽  
MOHAMMED SID AHMED HOUARI ◽  
KARIMA BAKHTI ◽  
...  

The novelty of this paper is the use of four variable refined plate theory for nonlinear analysis of plates made of functionally graded materials. The plates are subjected to pressure loading and their geometric nonlinearity is introduced in the strain–displacement equations based on Von–Karman assumptions. Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The fundamental equations for functionally graded plates are obtained using the Von–Karman theory for large deflection and the solution is obtained by minimization of the total potential energy. Numerical results for functionally graded plates are given in dimensionless graphical forms; and the effects of material properties on deflections and stresses are determined. The results obtained for plate with various thickness ratios using the theory are not only substantially more accurate than those obtained using the CPT, but are almost comparable to those obtained using higher order theories having more number of unknown functions.


Sign in / Sign up

Export Citation Format

Share Document