Neural Network-Based Techniques for Damage Identification of Bridges: A Review of Recent Advances

Author(s):  
S. Arangio
2006 ◽  
Vol 324-325 ◽  
pp. 205-208
Author(s):  
Qing Guo Fei ◽  
Ai Qun Li ◽  
Chang Qing Miao ◽  
Zhi Jun Li

This paper describes a study on damage identification using wavelet packet analysis and neural networks. The identification procedure could be divided into three steps. First, structure responses are decomposed into wavelet packet components. Then, the component energies are used to define damage feature and to train neural network models. Finally, in combination with the feature of the damaged structure response, the trained models are employed to determine the occurrence, the location and the qualification of the damage. The emphasis of this study is put on multi-damage case. Relevant issues are studied in detail especially the selection of training samples for multi-damage identification oriented neural network training. A frame model is utilized in the simulation cases to study the sampling techniques and the multi-damage identification. Uniform design is determined to be the most suitable sampling technique through simulation results. Identifications of multi-damage cases of the frame including different levels of damage at various locations are investigated. The results show that damages are successfully identified in all cases.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sergio V. Farias ◽  
Osamu Saotome ◽  
Haroldo F. Campos Velho ◽  
Elcio H. Shiguemori

A critical task of structural health monitoring is damage detection and localization. Lamb wave propagation methods have been successfully applied for damage identification in plate-like structures. However, Lamb wave processing is still a challenging task due to its multimodal and dispersive characteristics. To address this issue, data-driven machine learning approaches as artificial neural network (ANN) have been proposed. However, the effectiveness of ANN can be improved based on its architecture and the learning strategy employed to train it. The present paper proposes a Multiple Particle Collision Algorithm (MPCA) to design an optimum ANN architecture to detect and locate damages in plate-like structures. For the first time in the literature, the MPCA is applied to find damages in plate-like structures. The present work uses one piezoelectric transducer to generate Lamb wave signals on an aluminum plate structure and a linear array of four transducers to capture the scattered signals. The continuous wavelet transform (CWT) processes the captured signals to estimate the time-of-flight (ToF) that is the ANN inputs. The ANN output is the damage spatial coordinates. In addition to MPCA optimization, this paper uses a quantitative entropy-based criterion to find the best mother wavelet and the scale values. The presented experimental results show that MPCA is capable of finding a simple ANN architecture with good generalization performance in the proposed damage localization application. The proposed method is compared with the 1-dimensional convolutional neural network (1D-CNN). A discussion about the advantages and limitations of the proposed method is presented.


2020 ◽  
pp. 147592172092748 ◽  
Author(s):  
Zhiming Zhang ◽  
Chao Sun

Structural health monitoring methods are broadly classified into two categories: data-driven methods via statistical pattern recognition and physics-based methods through finite elementmodel updating. Data-driven structural health monitoring faces the challenge of data insufficiency that renders the learned model limited in identifying damage scenarios that are not contained in the training data. Model-based methods are susceptible to modeling error due to model idealizations and simplifications that make the finite element model updating results deviate from the truth. This study attempts to combine the merits of data-driven and physics-based structural health monitoring methods via physics-guided machine learning, expecting that the damage identification performance can be improved. Physics-guided machine learning uses observed feature data with correct labels as well as the physical model output of unlabeled instances. In this study, physics-guided machine learning is realized with a physics-guided neural network. The original modal-property based features are extended with the damage identification result of finite element model updating. A physics-based loss function is designed to evaluate the discrepancy between the neural network model output and that of finite element model updating. With the guidance from the scientific knowledge contained in finite element model updating, the learned neural network model has the potential to improve the generality and scientific consistency of the damage detection results. The proposed methodology is validated by a numerical case study on a steel pedestrian bridge model and an experimental study on a three-story building model.


Sign in / Sign up

Export Citation Format

Share Document