scholarly journals Gradient Flow of the $L_β$-Functional

2021 ◽  
Vol 37 (1) ◽  
pp. 113-140
Author(s):  
global XiaoliHan
Keyword(s):  
2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


Author(s):  
Alexander Mielke

AbstractWe consider a non-negative and one-homogeneous energy functional $${{\mathcal {J}}}$$ J on a Hilbert space. The paper provides an exact relation between the solutions of the associated gradient-flow equations and the energetic solutions generated via the rate-independent system given in terms of the time-dependent functional $${{\mathcal {E}}}(t,u)= t {{\mathcal {J}}}(u)$$ E ( t , u ) = t J ( u ) and the norm as a dissipation distance. The relation between the two flows is given via a solution-dependent reparametrization of time that can be guessed from the homogeneities of energy and dissipations in the two equations. We provide several examples including the total-variation flow and show that equivalence of the two systems through a solution dependent reparametrization of the time. Making the relation mathematically rigorous includes a careful analysis of the jumps in energetic solutions which correspond to constant-speed intervals for the solutions of the gradient-flow equation. As a major result we obtain a non-trivial existence and uniqueness result for the energetic rate-independent system.


Author(s):  
Frederic Alberti

AbstractIt is well known that the classical recombination equation for two parent individuals is equivalent to the law of mass action of a strongly reversible chemical reaction network, and can thus be reformulated as a generalised gradient system. Here, this is generalised to the case of an arbitrary number of parents. Furthermore, the gradient structure of the backward-time partitioning process is investigated.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
James Kohout ◽  
Melanie Rupflin ◽  
Peter M. Topping

AbstractThe harmonic map energy of a map from a closed, constant-curvature surface to a closed target manifold can be seen as a functional on the space of maps and domain metrics. We consider the gradient flow for this energy. In the absence of singularities, previous theory established that the flow converges to a branched minimal immersion, but only at a sequence of times converging to infinity, and only after pulling back by a sequence of diffeomorphisms. In this paper, we investigate whether it is necessary to pull back by these diffeomorphisms, and whether the convergence is uniform as {t\to\infty}.


2012 ◽  
Vol 24 (08) ◽  
pp. 1250020 ◽  
Author(s):  
JEAN BELLISSARD ◽  
HERMANN SCHULZ-BALDES

This paper analyzes the scattering theory for periodic tight-binding Hamiltonians perturbed by a finite range impurity. The classical energy gradient flow is used to construct a conjugate (or dilation) operator to the unperturbed Hamiltonian. For dimension d ≥ 3, the wave operator is given by an explicit formula in terms of this dilation operator, the free resolvent and the perturbation. From this formula, the scattering and time delay operators can be read off. Using the index theorem approach, a Levinson theorem is proved which also holds in the presence of embedded eigenvalues and threshold singularities.


Author(s):  
Ólafur H. Björnsson ◽  
Sikke A. Klein ◽  
Joeri Tober

Abstract The combustion properties of hydrogen make premixed hydrogen-air flames very prone to boundary layer flashback. This paper describes the improvement and extension of a boundary layer flashback model from Hoferichter [1] for flames confined in burner ducts. The original model did not perform well at higher preheat temperatures and overpredicted the backpressure of the flame at flashback by 4–5x. By simplifying the Lewis number dependent flame speed computation and by applying a generalized version of Stratford’s flow separation criterion [2], the prediction accuracy is improved significantly. The effect of adverse pressure gradient flow on the flashback limits in 2° and 4° diffusers is also captured adequately by coupling the model to flow simulations and taking into account the increased flow separation tendency in diffuser flow. Future research will focus on further experimental validation and direct numerical simulations to gain better insight into the role of the quenching distance and turbulence statistics.


Sign in / Sign up

Export Citation Format

Share Document